Вопрос задан 23.02.2019 в 14:29. Предмет Математика. Спрашивает Семенова Юля.

Решите задачу двумя способами. Петя и Вова вышли из своих домов навстречу друг другу и встретились

через 7 минут. Какое расстояние между домами Пети и Вовы, если Петя шел со скоростью 30 м/мин, а Вова со скоростью 40 м/мин?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Неделько Злата.
30*7+40*7=490(м)
Ответ:490м
0 0
Отвечает Андронова Настя.
(30+40)х7=490(м)-1 способ
30х7+40х7=490(м)2 способ
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Statement

Петя и Вова вышли из своих домов навстречу друг другу и встретились через 7 минут. Петя шел со скоростью 30 м/мин, а Вова со скоростью 40 м/мин. Какое расстояние между домами Пети и Вовы?

Solution 1: Using Relative Speed

To find the distance between the houses of Petya and Vova, we can use the concept of relative speed. The relative speed is the combined speed at which Petya and Vova are moving towards each other.

Let's assume the distance between their houses is d meters.

Petya's speed = 30 m/min Vova's speed = 40 m/min

Since they meet after 7 minutes, the total distance covered by both of them is equal to the distance between their houses.

The equation to calculate the distance is: Distance = Speed × Time

For Petya: Distance covered by Petya = Petya's speed × Time = 30 m/min × 7 min = 210 meters

For Vova: Distance covered by Vova = Vova's speed × Time = 40 m/min × 7 min = 280 meters

Since the total distance covered by both of them is equal to the distance between their houses, we can write the equation: 210 meters + 280 meters = d meters

Simplifying the equation: d = 490 meters

Therefore, the distance between the houses of Petya and Vova is 490 meters.

Solution 2: Using Time and Speed

Another way to solve this problem is by using the formula Distance = Speed × Time.

We know that Petya and Vova meet after 7 minutes. Let's assume the distance between their houses is d meters.

Petya's speed = 30 m/min Vova's speed = 40 m/min

The equation to calculate the distance is: Distance = Speed × Time

For Petya: Distance covered by Petya = Petya's speed × Time = 30 m/min × 7 min = 210 meters

For Vova: Distance covered by Vova = Vova's speed × Time = 40 m/min × 7 min = 280 meters

Since the total distance covered by both of them is equal to the distance between their houses, we can write the equation: 210 meters + 280 meters = d meters

Simplifying the equation: d = 490 meters

Therefore, the distance between the houses of Petya and Vova is 490 meters.

Both solutions yield the same result, which is 490 meters.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос