
Доказать (A\B)объединение(B\A)=(AобъединениеB)\(AпересекаетB)


Ответы на вопрос

(A\B)объединение(B\A)=(AобъединениеB)\(AпересекаетB)



Proof: (A\B) ∪ (B\A) = (A ∪ B) \ (A ∩ B)
To prove the equality (A\B) ∪ (B\A) = (A ∪ B) \ (A ∩ B), we need to show that both sets contain the same elements.
Let's start by considering the left-hand side of the equation, (A\B) ∪ (B\A):
- (A\B) represents the set of elements that are in A but not in B. - (B\A) represents the set of elements that are in B but not in A. - ∪ denotes the union of two sets, which means combining all the elements from both sets without duplication.
Therefore, (A\B) ∪ (B\A) represents the set of elements that are either in A but not in B or in B but not in A.
Now, let's consider the right-hand side of the equation, (A ∪ B) \ (A ∩ B):
- (A ∪ B) represents the set of elements that are in either A or B or both. - (A ∩ B) represents the set of elements that are common to both A and B. - \ denotes the set difference operation, which means removing the elements that are in the second set from the first set.
Therefore, (A ∪ B) \ (A ∩ B) represents the set of elements that are in either A or B or both, but not in both A and B.
To prove the equality, we need to show that both sets contain the same elements.
Let's consider an element x:
- If x is in (A\B) ∪ (B\A), it means that x is either in A but not in B or in B but not in A. - If x is in (A ∪ B) \ (A ∩ B), it means that x is in either A or B or both, but not in both A and B.
We can see that both cases are equivalent, as an element can only be in either A or B or both, but not in both A and B.
Therefore, we can conclude that (A\B) ∪ (B\A) = (A ∪ B) \ (A ∩ B).
Note: The proof provided above is a logical deduction based on the definitions of set operations. It does not rely on any specific context or domain.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili