
Вопрос задан 22.02.2019 в 21:35.
Предмет Математика.
Спрашивает Иванов Дима.
Для новогодних подарков купили 270 яблок, 675 мандаринов и различные сладости. какое наибольшее
число подарков можно приготовить, чтобы в них были одинаковые наборы яблок и мандаринов?

Ответы на вопрос

Отвечает Очеретна Вікторія.
270 и 675
Наибольшее общее кратное - 135
Значит мы можем сделать 135 одинаковых подарков с одинаковым целым колличеством яблок и мандаринов.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для того чтобы определить наибольшее число подарков, в которых будут одинаковые наборы яблок и мандаринов, нужно найти наименьшее общее кратное количества яблок и мандаринов.
Исходя из предоставленных данных, было куплено 270 яблок и 675 мандаринов.
Нахождение наименьшего общего кратного (НОК)
Для нахождения НОК можно воспользоваться различными методами, такими как метод простых множителей или метод деления.Метод простых множителей
1. Разложим число яблок и мандаринов на простые множители: - 270 = 2 * 3 * 3 * 3 * 5 - 675 = 3 * 3 * 3 * 5 * 52. Выберем наибольшую степень каждого простого множителя: - 2^1 * 3^3 * 5^2 = 2 * 27 * 25 = 1350
Таким образом, наибольшее число подарков, в которых будут одинаковые наборы яблок и мандаринов, составляет 1350.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili