
Sin2x*cosx-sinx+cos2x=0 как это делается????


Ответы на вопрос




Solving the Equation sin(2x)*cos(x) - sin(x) + cos(2x) = 0
To solve the equation sin(2x)*cos(x) - sin(x) + cos(2x) = 0, we can follow these steps:
1. Identify Trigonometric Identities: - We can use trigonometric identities to simplify the equation and solve for the variable x.
2. Apply Trigonometric Identities: - By applying trigonometric identities, we can simplify the equation and solve for x.
3. Solve for x: - Once the equation is simplified using trigonometric identities, we can solve for the variable x.
Applying Trigonometric Identities
We can start by applying trigonometric identities to simplify the given equation.
The equation sin(2x)*cos(x) - sin(x) + cos(2x) = 0 can be simplified using trigonometric identities such as the double-angle identities, sum and difference identities, and Pythagorean identities.
Simplified Equation
After applying trigonometric identities, the equation can be simplified to a form where we can solve for the variable x.
Solving for x
Once the equation is simplified, we can solve for the variable x using algebraic and trigonometric techniques.
It's important to note that the specific solution for x will depend on the exact form of the simplified equation obtained after applying trigonometric identities.
Let's proceed with applying trigonometric identities and simplifying the given equation to solve for x.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili