
Помогите!!! в сосуд со льдом массой 100 г и температурой 0 градусов впущен пар при 100 градусов.
сколько воды окажется в сосуде после того как весь лед растает ? помогите!!! прошу!!!!!!!!!!!!!!!!!!!!!!! задача по физике

Ответы на вопрос

Q1=r*m2+c*m2*(t-t1); m2=Q1/(r+c*(t-t1)); r=2,26*10^6; c=4200; t=100; t1=0; m2=(3,34*10^4)/(2,26*10^6+4200*100)=(3,34*10^4)/(2,68*10^6)=12,5*10^-3(кг) . Всего воды в сосуде окажется m=0,1+0,0125=0,1125(кг).



Problem Analysis
We have a vessel containing ice with a mass of 100 g and a temperature of 0 degrees Celsius. Steam at 100 degrees Celsius is introduced into the vessel. We need to determine how much water will be in the vessel after all the ice has melted.Solution
To solve this problem, we need to consider the energy transfer that occurs during the phase changes of the ice and steam. The energy required to melt ice is known as the latent heat of fusion, and the energy required to vaporize water is known as the latent heat of vaporization.First, let's calculate the energy required to melt the ice. The formula to calculate the energy is:
Q = m * Lf
Where: - Q is the energy required to melt the ice, - m is the mass of the ice, and - Lf is the latent heat of fusion.
The latent heat of fusion for ice is approximately 334 J/g.
Substituting the values into the formula, we get:
Q = 100 g * 334 J/g = 33400 J
Next, let's calculate the energy released when the steam condenses into water. The formula to calculate the energy is:
Q = m * Lv
Where: - Q is the energy released when the steam condenses, - m is the mass of the steam, and - Lv is the latent heat of vaporization.
The latent heat of vaporization for water is approximately 2260 J/g.
Since the mass of the steam is not given in the problem, we need to determine it. To do this, we can use the principle of conservation of mass. The mass of the steam will be equal to the mass of the ice that has melted.
Therefore, the mass of the steam is 100 g.
Substituting the values into the formula, we get:
Q = 100 g * 2260 J/g = 226000 J
Now, let's calculate the total energy transferred during the phase changes. This can be done by adding the energy required to melt the ice and the energy released when the steam condenses:
Total energy transferred = Energy to melt ice + Energy released when steam condenses
Total energy transferred = 33400 J + 226000 J = 259400 J
Finally, let's calculate the amount of water that will be in the vessel after all the ice has melted. We can use the specific heat capacity of water to do this. The formula to calculate the amount of water is:
Q = m * c * ΔT
Where: - Q is the total energy transferred, - m is the mass of the water, - c is the specific heat capacity of water, and - ΔT is the change in temperature.
The specific heat capacity of water is approximately 4.18 J/g°C.
Since the initial temperature of the ice is 0°C and the final temperature of the water will also be 0°C, the change in temperature is 0°C.
Substituting the values into the formula, we get:
259400 J = m * 4.18 J/g°C * 0°C
Simplifying the equation, we find that the mass of the water is:
m = 259400 J / (4.18 J/g°C * 0°C) = 0 g
Therefore, after all the ice has melted, there will be no water in the vessel.
Conclusion
After all the ice has melted, there will be no water in the vessel.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili