
Найти cosa и tga .если sina =5/13 и Пи /2< a <П


Ответы на вопрос

sina =5/13, cosα=-√1-25/169=-√144/169=-12/13
tgα=5/13:(-12/13)=-5/12



Finding the Values of `cosa` and `tga`
To find the values of `cosa` and `tga`, we need to use the given information that `sina = 5/13` and `π/2 < a < π`.
The trigonometric functions `sina`, `cosa`, and `tga` are related by the following identities:
- `sina = opposite/hypotenuse` - `cosa = adjacent/hypotenuse` - `tga = opposite/adjacent`
Since `sina = 5/13`, we can assume a right triangle with an opposite side of length 5 and a hypotenuse of length 13. Let's call the adjacent side `x`.
Using the Pythagorean theorem, we can find the value of `x`:
``` x^2 + 5^2 = 13^2 x^2 + 25 = 169 x^2 = 144 x = 12 ```
Now that we know the value of `x`, we can find `cosa` and `tga`:
``` cosa = x/hypotenuse = 12/13 tga = opposite/adjacent = 5/12 ```
Therefore, the values of `cosa` and `tga` are 12/13 and 5/12, respectively.
Please note that the search results provided by You.com did not contain the specific values of `cosa` and `tga` for the given conditions. The calculations above were done based on the given information and trigonometric identities.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili