Вопрос задан 18.02.2019 в 06:50. Предмет Математика. Спрашивает Шевчук Александра.

Ответы к задачи три поросенка делит площадь со сторонами в 63 прямоугольной части равной площади

какова наименьшая возможная длина изгороди которые они должны построить внутри квадрата чтобы отделить печатки друг от друга
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Улякина Соня.
Строят два забора по 63 м = 126 м
ОТВЕТ 126 м.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

The problem states that three piglets are dividing a square area into 63 rectangular parts of equal area. The task is to determine the minimum possible length of the fence they need to build inside the square to separate the piglets from each other.

Solution

To solve this problem, we need to find the dimensions of the rectangular parts that the piglets are dividing the square into. Since there are 63 parts, we can assume that the square can be divided into a 7x9 grid of rectangular parts.

Let's calculate the dimensions of each rectangular part:

- The total area of the square is equal to the sum of the areas of all the rectangular parts. - The area of the square is equal to the side length squared. - The area of each rectangular part is equal to its length multiplied by its width.

Let's denote the length of each rectangular part as l and the width as w. We can set up the following equation:

7l * 9w = side length squared

To find the minimum possible length of the fence, we need to minimize the perimeter of the fence. The perimeter of the fence is equal to the sum of the lengths of all the sides of the rectangular parts.

The perimeter of the fence can be calculated as follows:

Perimeter = 2 * (7l + 9w)

To find the minimum possible length of the fence, we need to minimize the perimeter. This can be achieved by minimizing the sum of l and w.

Let's solve the equation to find the values of l and w:

7l * 9w = side length squared

We can simplify the equation by dividing both sides by 7:

l * 9w = (side length squared) / 7

Now, we can express w in terms of l:

w = (side length squared) / (7l * 9)

Substituting this value of w into the perimeter equation, we get:

Perimeter = 2 * (7l + 9 * (side length squared) / (7l * 9))

Simplifying further, we get:

Perimeter = 2 * (7l + side length squared / l)

To find the minimum possible length of the fence, we need to minimize the perimeter. We can do this by finding the value of l that minimizes the expression:

7l + side length squared / l

We can find the minimum value of this expression by taking the derivative with respect to l and setting it equal to zero:

7 - (side length squared) / l^2 = 0

Simplifying further, we get:

l^2 = (side length squared) / 7

Taking the square root of both sides, we get:

l = sqrt(side length squared / 7)

Now, we can substitute this value of l back into the perimeter equation to find the minimum possible length of the fence:

Perimeter = 2 * (7 * sqrt(side length squared / 7) + side length squared / sqrt(side length squared / 7))

Simplifying further, we get:

Perimeter = 2 * (7 * sqrt(side length squared / 7) + sqrt(7) * side length squared / sqrt(side length squared))

Perimeter = 2 * (7 * sqrt(side length squared / 7) + sqrt(7) * side length)

Therefore, the minimum possible length of the fence is given by:

Minimum Fence Length = 2 * (7 * sqrt(side length squared / 7) + sqrt(7) * side length)

Let's calculate the minimum possible length of the fence using the given side length of the square.

Calculation

The problem does not provide the side length of the square. Please provide the side length of the square so that we can calculate the minimum possible length of the fence.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос