
Корень 5 = корень х^2 -4 помогите срочноо


Ответы на вопрос

5=X^2-4
X^2=5-4=1
X=+/-1



Solving the Equation: $\sqrt{5} = \sqrt{x^2 - 4}$
To solve the equation $\sqrt{5} = \sqrt{x^2 - 4}$, we need to isolate the variable $x$.
First, we square both sides of the equation to eliminate the square roots:
$(\sqrt{5})^2 = (\sqrt{x^2 - 4})^2$
Simplifying, we get:
$5 = x^2 - 4$
Next, we add 4 to both sides of the equation:
$5 + 4 = x^2 - 4 + 4$
Simplifying further, we have:
$9 = x^2$
To solve for $x$, we take the square root of both sides of the equation:
$\sqrt{9} = \sqrt{x^2}$
This gives us:
$3 = x$
Therefore, the solution to the equation $\sqrt{5} = \sqrt{x^2 - 4}$ is $x = 3$.
Note: It's important to verify the solution by substituting it back into the original equation to ensure it satisfies the equation. In this case, substituting $x = 3$ into the equation $\sqrt{5} = \sqrt{x^2 - 4}$ gives us $\sqrt{5} = \sqrt{3^2 - 4}$, which simplifies to $\sqrt{5} = \sqrt{9 - 4}$, and finally $\sqrt{5} = \sqrt{5}$. Since both sides of the equation are equal, we can conclude that $x = 3$ is indeed the solution.
Solution:
The solution to the equation $\sqrt{5} = \sqrt{x^2 - 4}$ is $x = 3.Let me know if there's anything else I can help with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili