Вопрос задан 16.02.2019 в 22:02. Предмет Математика. Спрашивает Кочерова Мария.

Из двух городов навстречу друг другу одновременно отправились два поезда. Скорость одного 60км/ч

другой за 1 час проходит на 20 км больше. Через 3ч 30 мин поезда встретились. Найти расстояние между городами. Во 2 действие с дробями 1/5 так
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Орлов Саша.
Всмысле я чёт не понел последний вопрос


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two trains start simultaneously from two cities and meet after 3 hours and 30 minutes. The speed of one train is 60 km/h, and the other train covers 20 km more in 1 hour. We need to find the distance between the two cities.

Solution

Let's assume the speed of the second train is x km/h. According to the problem, the second train covers 20 km more than the first train in 1 hour. So, the distance covered by the second train in 1 hour is (60 + 20) km.

Using this information, we can set up the following equation:

Distance covered by the first train in 3 hours and 30 minutes + Distance covered by the second train in 3 hours and 30 minutes = Total distance between the two cities

To find the distance covered by each train, we can use the formula:

Distance = Speed × Time

Let's calculate the distance covered by each train and then find the total distance between the two cities.

Calculation

The distance covered by the first train in 3 hours and 30 minutes is: Distance1 = Speed1 × Time1 = 60 km/h × (3.5 hours) = 210 km The distance covered by the second train in 3 hours and 30 minutes is: Distance2 = Speed2 × Time2 = (60 + 20) km/h × (3.5 hours) = 280 km The total distance between the two cities is: Total Distance = Distance1 + Distance2 = 210 km + 280 km = 490 km

Therefore, the distance between the two cities is 490 km.

Answer

The distance between the two cities is 490 km.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two trains traveling towards each other from two different cities. The speed of one train is 60 km/h, while the other train travels 20 km more in 1 hour. After 3 hours and 30 minutes, the trains meet. We need to find the distance between the two cities.

Solution

Let's break down the problem step by step:

1. Let's assume the speed of the second train is x km/h. According to the problem, the second train travels 20 km more in 1 hour. So, the speed of the second train can be expressed as (60 + x) km/h.

2. We know that distance = speed × time. The time taken by both trains to meet is 3 hours and 30 minutes, which can be expressed as 3.5 hours.

3. The distance traveled by the first train can be calculated as 60 km/h × 3.5 hours = 210 km.

4. The distance traveled by the second train can be calculated as (60 + x) km/h × 3.5 hours = (210 + 3.5x) km.

5. Since the trains meet, the sum of the distances traveled by both trains is equal to the total distance between the cities. Therefore, we can write the equation: 210 km + (210 + 3.5x) km = total distance.

6. Simplifying the equation, we get: 420 + 3.5x = total distance.

7. To find the total distance, we need to solve for x. We can do this by substituting the given information that the trains meet after 3 hours and 30 minutes. Therefore, x = 20 km/h.

8. Substituting the value of x into the equation, we get: 420 + 3.5(20) = total distance.

9. Calculating the equation, we find that the total distance between the cities is 490 km.

Answer

The distance between the two cities is 490 km.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос