Вопрос задан 15.02.2019 в 16:20. Предмет Математика. Спрашивает Кожухарь Ирина.

Миша утверждает, что если сумма двух чисел делится на 5, то и каждое слагаемое делится на 5.

Докажите, что Миша не прав. Приведите примеры.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коробейникова Анастасия.
Он не прав. Например, 31 + 34 = 65. 65 делится на 5, но ни 31, ни 34 на 5 не делятся. 
Или 22 + 33 = 55. 55 делится, а слагаемые нет. 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я рад помочь вам с вашим вопросом.

Миша не прав, потому что его утверждение не верно для всех случаев. Для того, чтобы доказать это, достаточно найти контрпример, то есть такие два числа, которые удовлетворяют условию задачи, но не выводу Миши.

Например, пусть $a=3$ и $b=7$. Тогда $a+b=10$, и сумма делится на $5$. Однако, ни $a$, ни $b$ не делятся на $5$. Значит, Миша ошибся.

Если вы хотите узнать больше о признаках делимости чисел, вы можете посетить [этот сайт](https://wika.tutoronline.ru/algebra/class/10/kakie-priznaki-delimosti-chisel-sushhestvuyut) или [этот каталог задач](https://2.shkolkovo.online/catalog/189?SubjectId=1). Надеюсь, это было полезно для вас. Спасибо за обращение к Bing.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос