
Три машинистки напечатали 72 стр. сколько напечатала каждая из из них, если 1 работала 1 час,
вторая 2 часа, а третья 3 часа. Сколько напечатала каждая из них, если они работали с одинаковой скоростью?

Ответы на вопрос

1+2+3=6ч)-всего работали три машинистки
72/6=12стр в час-первая машинистка работая час
12*2=24стр-вторая машинистка работая 2 часа
12*3=36стр-третья машинистка работая 3 часа



Problem Analysis
We are given that three typists printed a total of 72 pages. The first typist worked for 1 hour, the second typist worked for 2 hours, and the third typist worked for 3 hours. We need to determine how many pages each typist printed if they worked at the same speed.Solution
To solve this problem, we can set up a proportion based on the number of hours worked by each typist and the total number of pages printed. Let's denote the number of pages printed by the first typist as x, the number of pages printed by the second typist as y, and the number of pages printed by the third typist as z.From the given information, we can set up the following proportion:
x/1 = y/2 = z/3 = (x + y + z)/72
Simplifying the proportion, we get:
x = (1/6) * (x + y + z) y = (2/6) * (x + y + z) z = (3/6) * (x + y + z)
To find the values of x, y, and z, we can substitute the second equation into the first equation to eliminate y, and then substitute the third equation into the second equation to eliminate z.
Let's solve the equations to find the values of x, y, and z.
Solution Steps
1. Substitute the second equation into the first equation to eliminate y: x = (1/6) * (x + (2/6) * (x + y + z) + z) Simplify the equation: x = (1/6) * (x + (2/6) * (x + (3/6) * (x + y + z)) + z)2. Substitute the third equation into the second equation to eliminate z: y = (2/6) * (x + (3/6) * (x + y + z)) Simplify the equation: y = (2/6) * (x + (3/6) * (x + (3/6) * (x + y + z)))
3. Simplify the equations obtained in steps 1 and 2 to solve for x, y, and z.
Solution
Let's solve the equations obtained in the previous steps to find the values of x, y, and z.1. Substitute the second equation into the first equation to eliminate y: x = (1/6) * (x + (2/6) * (x + y + z) + z) Simplify the equation: 6x = x + 2(x + y + z) + 6z 6x = x +


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili