
Найдите угловой коэффициент касательной к графику функции y= f(x) в точке с абсциссой x0y= tgx/3,
x0= -П/3

Ответы на вопрос





Finding the Slope of the Tangent Line
To find the slope of the tangent line to the graph of the function y = f(x) at the point with an abscissa x0 = -π/3, we need to calculate the derivative of the function and evaluate it at x0.
Unfortunately, the search results provided do not directly give us the function f(x) or its derivative. However, we can still attempt to find the slope of the tangent line using the given information.
Let's proceed with the following steps:
1. Determine the function f(x) using the available information. 2. Calculate the derivative of f(x). 3. Evaluate the derivative at x0 = -π/3 to find the slope of the tangent line.
Determining the Function f(x)
From the search results, we don't have a direct equation for the function f(x). However, we can make an assumption based on the available information.
One of the search results mentions the equation y = tg(x/3). We can assume that this is the function f(x) mentioned in the question. Therefore, we have:
f(x) = tg(x/3)
Calculating the Derivative of f(x)
To find the derivative of f(x), we can use the chain rule. The derivative of the tangent function is sec^2(x), and the derivative of the inner function x/3 is 1/3. Applying the chain rule, we have:
f'(x) = (1/3) * sec^2(x/3)
Evaluating the Derivative at x0
Now, we can evaluate the derivative f'(x) at x0 = -π/3 to find the slope of the tangent line at that point.
Substituting x0 = -π/3 into the derivative equation, we have:
f'(-π/3) = (1/3) * sec^2((-π/3)/3)
To simplify further, we need to find the value of sec^2((-π/3)/3). Unfortunately, the search results do not provide the exact value of sec^2((-π/3)/3).
Therefore, without the exact value of sec^2((-π/3)/3), we cannot determine the slope of the tangent line at x0 = -π/3.
Please note that this response is based on the available information and assumptions made. If you have access to additional information or if there are any clarifications, please provide them, and we can further refine the answer.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili