Вопрос задан 21.09.2018 в 03:19. Предмет Математика. Спрашивает Санников Алексей.

Один катет прямоугольного треугольника на 7 см. больше другого,а гипотенуза ровна 13 см.Найдите

катеты этого треугольника.Помогите пожалуйста решить!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Воробьёва Даша.
13^2=(7+x)^2+x^2
169=49+x^2+14x+x^2
x^2+7x-60=0
x=5-один катет
5+7=12-другой катет
0 0
Отвечает Шапчиц Анастасия.
Катет можно по теореме синусов найти: 

ну это если вы уже синусы и косинусы прошли,а так по формуле квадрат гипотенузы равен сумме квадратов катетов.Я не решила,потому что у меня уже мозги плавятся:D главное формула есть,попробуй по этим,должно получиться 
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем использовать теорему Пифагора для прямоугольных треугольников. Теорема Пифагора утверждает, что в прямоугольном треугольнике с катетами a и b, и гипотенузой c, выполняется следующее равенство:

a^2 + b^2 = c^2

В вашей задаче у нас есть гипотенуза (c), которая равна 13 см. Также у нас есть информация о катетах:

Один катет (допустим, это a) больше другого катета на 7 см. То есть:

a = b + 7

Теперь мы можем использовать теорему Пифагора для нахождения длин катетов. Подставим известные значения:

(b + 7)^2 + b^2 = 13^2

Раскроем скобки и упростим:

b^2 + 14b + 49 + b^2 = 169

Теперь объединим подобные члены:

2b^2 + 14b + 49 = 169

Вычитаем 169 с обеих сторон:

2b^2 + 14b + 49 - 169 = 0

2b^2 + 14b - 120 = 0

Теперь давайте разделим уравнение на 2 для упрощения:

b^2 + 7b - 60 = 0

Это уравнение квадратного типа. Мы можем решить его с помощью квадратного уравнения или факторизации. Давайте воспользуемся факторизацией:

(b + 12)(b - 5) = 0

Теперь у нас есть два возможных значения b:

1. b + 12 = 0 => b = -12 2. b - 5 = 0 => b = 5

Мы нашли два значения для одного из катетов. Один из них отрицательный (-12), что не имеет физического смысла в данном контексте. Поэтому, b = 5 см.

Теперь, используя значение b, найдем a:

a = b + 7 = 5 + 7 = 12 см

Итак, катеты прямоугольного треугольника равны 5 см и 12 см.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос