
Из пункта А в пункт В велосипедист проехал по одной дороге длиной 27км а обратро возвращался по
другой дороге которая была короче первой на 7км.Хотя на обратном пути велосипедист уменьшил скорость на 3км/ч он всё же на обратный путь затратил времени на 10 мин меньше чем на путь из А в Б.С какой скоростью ехал волосипедист из А в Б?

Ответы на вопрос




Problem Analysis
We are given that a cyclist traveled from point A to point B along a road that was 27 km long. On the return journey, the cyclist took a different road that was 7 km shorter than the first road. Despite reducing their speed by 3 km/h on the return journey, the cyclist took 10 minutes less time on the return journey than on the journey from A to B. We need to determine the speed at which the cyclist traveled from A to B.Solution
Let's assume the speed of the cyclist on the journey from A to B is x km/h.The time taken for the journey from A to B can be calculated using the formula: time = distance / speed.
On the journey from A to B, the distance is 27 km, so the time taken is 27 / x hours.
On the return journey, the cyclist reduced their speed by 3 km/h, so the speed on the return journey is (x - 3) km/h.
The distance on the return journey is 27 km - 7 km = 20 km.
The time taken for the return journey can be calculated using the formula: time = distance / speed.
On the return journey, the time taken is 20 / (x - 3) hours.
According to the problem statement, the time taken on the return journey is 10 minutes less than the time taken on the journey from A to B.
Converting 10 minutes to hours, we have 10 / 60 = 1/6 hours.
So, we can set up the equation:
27 / x - 20 / (x - 3) = 1/6
To solve this equation, we can multiply through by 6x(x - 3) to eliminate the denominators:
162(x - 3) - 27x = x(x - 3)
Simplifying the equation:
162x - 486 - 27x = x^2 - 3x
x^2 - 3x - 135 = 0
We can solve this quadratic equation to find the value of x.
Calculation
Using the quadratic formula, x = (-b ± √(b^2 - 4ac)) / 2a, where a = 1, b = -3, and c = -135.Calculating the discriminant, b^2 - 4ac:
(-3)^2 - 4(1)(-135) = 9 + 540 = 549
Since the discriminant is positive, we have two real solutions.
Calculating the solutions:
x = (-(-3) ± √(549)) / (2 * 1) = (3 ± √549) / 2
Approximating the solutions:
x ≈ (3 + √549) / 2 ≈ 12.6 km/h or x ≈ (3 - √549) / 2 ≈ -9.6 km/h
Since the speed cannot be negative, the cyclist traveled from A to B at a speed of approximately 12.6 km/h.
Answer
The cyclist traveled from point A to point B at a speed of approximately 12.6 km/h.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili