
Решить задачу. Из 35 студентов сдали зачеты по английскому языку 14 человек, по русскому языку – 12
человек, по литературе- 16 человек. Трое студентов сдали английский язык и русский; английский и литературу сдали 3 студентов; литературу и русский- 4 чел. Сколько студентов сдали зачеты по всем трем предметам?

Ответы на вопрос

по всем предметам не более трёх человек
литра на 1 больше, чем англ. яз 7-1=6
литра=русс=2+2
6-4=2
2-1=1
1



Problem Analysis
We are given the number of students who passed exams in English, Russian, and Literature, as well as the number of students who passed exams in combinations of these subjects. We need to determine the number of students who passed exams in all three subjects.Solution
To solve this problem, we can use the principle of inclusion-exclusion. We will start by adding the number of students who passed exams in each subject individually. Then, we will subtract the number of students who passed exams in combinations of two subjects. Finally, we will add back the number of students who passed exams in all three subjects.Let's calculate the number of students who passed exams in all three subjects step by step:
1. Number of students who passed the English exam: 14. 2. Number of students who passed the Russian exam: 12. 3. Number of students who passed the Literature exam: 16. 4. Number of students who passed both English and Russian exams: 3. 5. Number of students who passed both English and Literature exams: 3. 6. Number of students who passed both Russian and Literature exams: 4.
Now, let's calculate the number of students who passed exams in all three subjects using the inclusion-exclusion principle:
Number of students who passed exams in all three subjects = Number of students who passed the English exam + Number of students who passed the Russian exam + Number of students who passed the Literature exam - Number of students who passed both English and Russian exams - Number of students who passed both English and Literature exams - Number of students who passed both Russian and Literature exams + Number of students who passed exams in all three subjects.
Number of students who passed exams in all three subjects = 14 + 12 + 16 - 3 - 3 - 4 + Number of students who passed exams in all three subjects.
Let's solve this equation to find the number of students who passed exams in all three subjects:
Number of students who passed exams in all three subjects = 14 + 12 + 16 - 3 - 3 - 4 = 32.
Therefore, 32 students passed exams in all three subjects.
Answer
The number of students who passed exams in all three subjects is 32.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili