
Из пункта A в 9 ч. 00 мин. выехал велосипедист и приехал в пункт B в 10 ч. 00 мин. Из пункта B в 9
ч. 00 мин. по той же дороге выехал мотоциклист и приехал в пункт A в 9 ч. 40 мин. Через сколько минут после начала движения они встретились, если оба ехали с постоянной скоростью?

Ответы на вопрос

скорость второго -
затраченное время первым:
затраченное время первым:
значит
------------------------------------------------------------
До момента встречи оба затратили одно и тоже время
---------------------------------
из первых двух уравнений:
тогда имеем:



Problem Analysis
We are given that a cyclist left point A at 9:00 AM and arrived at point B at 10:00 AM. Then, a motorcyclist left point B at 9:00 AM and arrived at point A at 9:40 AM. We need to determine how many minutes after the start of their journeys they met, assuming both were traveling at a constant speed.Solution
Let's assume the distance between points A and B is d.We know that the cyclist traveled from A to B in 1 hour (60 minutes), and the motorcyclist traveled from B to A in 40 minutes.
To find the speed of each traveler, we can use the formula speed = distance / time.
For the cyclist: - Speed of the cyclist = d / 60 (since the cyclist traveled for 60 minutes)
For the motorcyclist: - Speed of the motorcyclist = d / 40 (since the motorcyclist traveled for 40 minutes)
Since both travelers were traveling at a constant speed, we can set up an equation to find the meeting time. Let's assume the meeting time is t minutes after the start of their journeys.
For the cyclist: - Distance traveled by the cyclist = speed of the cyclist * t = (d / 60) * t
For the motorcyclist: - Distance traveled by the motorcyclist = speed of the motorcyclist * t = (d / 40) * t
Since they met, the sum of the distances traveled by the cyclist and the motorcyclist should be equal to the total distance between points A and B: (d / 60) * t + (d / 40) * t = d
Now, we can solve this equation to find the value of t.
Calculation
Let's solve the equation to find the value of t:(d / 60) * t + (d / 40) * t = d
Multiplying both sides of the equation by 120 (the least common multiple of 60 and 40) to eliminate the denominators:
2d * t + 3d * t = 120d
5d * t = 120d
Dividing both sides of the equation by 5d:
t = 120 / 5 = 24
Therefore, the two travelers met 24 minutes after the start of their journeys.
Answer
The cyclist and the motorcyclist met 24 minutes after the start of their journeys, assuming both were traveling at a constant speed.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili