Вопрос задан 14.08.2018 в 14:27. Предмет Математика. Спрашивает Сапожников Данила.

1) Реши задачу. На пасеке 7 полных, 7 наполовину наполненных мёдом и 7 пустых бочонков. Трое

покупателей купили все бочонки а разделили их так, что каждому досталось одинаковое количество мёда и бочонков. Как они разделили между собой покупку?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тупиков Сергей.
7*1+7*0,5+7*0=7+3,5+0=10,5 всего бочонок меда
10,5:3=3,5 каждому
теперь подбираем для каждого
должно у каждого 7 бочонка
3,5=3*1+1*0,5+3*0
3,5=3*1+1*0,5+3*0
3,5=1*1+5*0,5+1*0
у первого 3 полных, 1 половина, 3 пустых
у второго также
у третьего 1 полный 5 половина 1 пустой
0 0
Отвечает Латыпов Денис.
Ответ на фото.. надеюсь понятно

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

У нас есть 7 полных бочонков, 7 наполовину наполненных мёдом бочонков и 7 пустых бочонков, всего 21 бочонок. Трое покупателей купили все бочонки и разделили их так, чтобы каждому досталось одинаковое количество мёда и бочонков.

Чтобы найти количество бочонков и мёда, которое получил каждый покупатель, мы можем разделить общее количество бочонков и мёда на троих.

Общее количество бочонков равно 21, и мы делим его на троих покупателей:

21 бочонок / 3 покупателя = 7 бочонков на каждого покупателя.

То же самое мы делаем с количеством мёда:

7 полных бочонков + 7 наполовину наполненных бочонков = 14 бочонков мёда. 14 бочонков мёда / 3 покупателя = 4,6667 бочонка мёда на каждого покупателя.

Так как бочонки не могут быть разделены наполовину, каждый покупатель получит по 4 бочонка мёда.

Итак, покупатели разделили покупку следующим образом: каждый покупатель получил 7 бочонков (полные и наполовину наполненные) и 4 бочонка мёда.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос