
Вопрос задан 10.08.2018 в 16:41.
Предмет Математика.
Спрашивает Дашук Полина.
Напишите уравнение прямой y=kx+b график которой проходит через точки A ( -3 ; 3 ) B ( 3 ; -3 )


Ответы на вопрос

Отвечает Гималиев Серёжа.
А(-3;3)
В(3;-3)

следовательно, у=-х
пояснение: в системе уравнений х - коэффициент, у - b.
В(3;-3)
следовательно, у=-х
пояснение: в системе уравнений х - коэффициент, у - b.



Отвечает Бардин Константин.
Ответ: у = -х
Решение прилагаю
Решение прилагаю




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для того чтобы найти уравнение прямой, проходящей через заданные точки A(-3, 3) и B(3, -3), мы можем воспользоваться уравнением прямой в общем виде y = kx + b, где k - коэффициент наклона прямой, а b - свободный член.
Нахождение коэффициента наклона (k):
Коэффициент наклона (k) можно найти, используя формулу: \[ k = \frac{{y_2 - y_1}}{{x_2 - x_1}} \] где (x1, y1) и (x2, y2) - координаты заданных точек.Подставим значения точек A(-3, 3) и B(3, -3): \[ k = \frac{{-3 - 3}}{{3 - (-3)}} = \frac{{-6}}{{6}} = -1 \]
Нахождение свободного члена (b):
После нахождения коэффициента наклона (k), мы можем найти свободный член (b), используя одну из заданных точек и значение k: \[ b = y - kx \] Выберем, например, точку A(-3, 3): \[ b = 3 - (-1) \cdot (-3) = 3 - 3 = 0 \]Уравнение прямой:
Таким образом, уравнение прямой, проходящей через точки A(-3, 3) и B(3, -3), имеет вид: \[ y = -x \]Таким образом, уравнение прямой, проходящей через точки A(-3, 3) и B(3, -3), имеет вид y = -x.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili