Вопрос задан 08.08.2018 в 13:28. Предмет Математика. Спрашивает Третьяков Евгений.

Решите пожалуйста с объяснением: В школе «Эксперимент» учащимся выставляют оценки от 1 до 5. Борис

получил по контрольной двойку. Учитель заметил, что, если ему изменить эту двойку на пятерку, то средний балл по контрольной среди Борисов в классе увеличится ровно в два раза. Сколько Борисов писало контрольную?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шарғынов Ерсултан.
2 Бариса писали контрольную
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам решить эту задачу с объяснением.

Пусть $n$ - это количество Борисов, которые писали контрольную, $x$ - это средний балл по контрольной среди Борисов до изменения двойки на пятерку, а $y$ - это средний балл по контрольной среди Борисов после изменения двойки на пятерку. Тогда по условию задачи мы можем составить следующие уравнения:

$$ nx = 2y(n-1) + 5 - 2 \tag{1} $$

$$ y = 2x \tag{2} $$

Уравнение (1) следует из того, что сумма баллов по контрольной среди Борисов до и после изменения двойки на пятерку должна быть одинаковой. Уравнение (2) следует из того, что средний балл по контрольной среди Борисов увеличился в два раза.

Подставляя (2) в (1), мы получаем:

$$ n(2x) = 2x(n-1) + 5 - 2 $$

Упрощая, мы получаем:

$$ n = 4 $$

Ответ: Контрольную писали четыре Бориса.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос