Вопрос задан 05.08.2018 в 06:55. Предмет Математика. Спрашивает Филин Владислав.

А что такое трехчлен?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пентегов Сергей.

Трехчлен - три выражения, сложенных вместе, например квадратные трехчлены :
х^2+2х+3, 2х^2+5х-7, 10+2х^2-3х

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Трехчлен - это многочлен, состоящий из трех членов, где каждый член содержит переменную в различных степенях. Обычно трехчлен записывается в виде ax^2 + bx + c, где a, b и c - это коэффициенты, а x - переменная. Трехчлены широко используются в алгебре и математике для моделирования и решения различных задач.

Например, трехчлен x^2 - 5x + 6 имеет три члена: x^2, -5x и 6. В этом случае a = 1, b = -5 и c = 6. Такой трехчлен может быть использован для нахождения корней квадратного уравнения или для построения графика функции.

Пример:

Рассмотрим трехчлен x^2 - 2x - 8. В этом случае a = 1, b = -2 и c = -8. Чтобы найти корни этого уравнения, мы можем использовать формулу дискриминанта D = b^2 - 4ac. В данном случае D = (-2)^2 - 4 * 1 * (-8) = 4 + 32 = 36. Так как D > 0, у уравнения есть два различных корня. Мы можем найти их, используя формулы x1 = (-b + √D) / (2a) и x2 = (-b - √D) / (2a). В данном случае x1 = (2 + 6) / 2 = 8 / 2 = 4 и x2 = (2 - 6) / 2 = -4 / 2 = -2. Таким образом, корни уравнения x^2 - 2x - 8 = 0 равны 4 и -2.

Примечание:

Трехчлены могут иметь различные формы и коэффициенты в зависимости от конкретной задачи или уравнения. Важно учитывать значения коэффициентов и правильно применять соответствующие методы для решения уравнений или анализа функций, содержащих трехчлены.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос