Вопрос задан 03.08.2018 в 09:01. Предмет Математика. Спрашивает Вей Даша.

Поставьте вместо # цифры чтобы всё было правильно 34#+**1=609 #23-5##=181 6#3-29#=#41 7#0-58*=*94

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Stanislaviv Diana.

348+261=609

 723-542=181

633-292=341

 780-586=194

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation and replace the "#" symbols with numbers, let's break down the given expression step by step:

34#**1 = 609 First, let's replace the "#" symbol with a number to make the equation valid. Since 34 multiplied by 1 equals 34, we can replace "#" with 34:

34**1 = 609

The equation becomes:

34 * 1 = 609

Simplifying the expression, we get:

34 = 609

However, this is not a valid equation since 34 does not equal 609. Therefore, there is no valid number to replace the "#" symbol in this case.

-------------------

23 - 5## = 181 Next, let's work on the second equation. To replace the "#" symbols, we need to find the numbers that satisfy the equation. Let's break it down step by step:

23 - 5## = 181

Since we have two "#" symbols, we need to find two different numbers to replace them. Let's assume the first "#" represents "a" and the second "#" represents "b".

The equation becomes:

23 - 5ab = 181

Now let's try different values for "a" and "b" to solve the equation. We can start with simple values:

For a = 0 and b = 0: 23 - 50 = -27 (not equal to 181)

For a = 1 and b = 1: 23 - 51 = -28 (not equal to 181)

We can try different combinations of "a" and "b", but we won't be able to find a valid solution for this equation. Therefore, there is no valid number to replace the "#" symbols in this case.

-------------------

6#3 - 29# = #41 + 7#0 - 58* Finally, let's solve the third equation and replace the "#" symbols:

6#3 - 29# = #41 + 7#0 - 58*

Let's assume the first "#" represents "c" and the second "#" represents "d".

The equation becomes:

6c3 - 29d = c41 + 7d0 - 58*

Now, let's try different values for "c" and "d" to solve the equation:

For c = 0 and d = 0: 603 - 290 = 041 + 700 - 58* (valid equation)

For c = 1 and d = 1: 613 - 291 = 141 + 710 - 58* (valid equation)

We can find different combinations of "c" and "d" that satisfy the equation. The exact values for "c" and "d" will depend on the specific values of the "#" symbols.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос