Вопрос задан 10.12.2023 в 14:37. Предмет Математика. Спрашивает Журов Саша.

Майстер може виконати роботу за 4 години а учень ту саму роботу за 9 годин яка частина роботи

залишиться не виконаною після однієї години сумісної роботи майстра та учня по діям​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иващенко Никита.

Ответ:

Спочатку знайдемо обсяг роботи, який може виконати майстер за 1 годину. Майстер може виконати всю роботу за 4 години, тобто він виконує 1/4 роботи за 1 годину.

Аналогічно, учень може виконати всю роботу за 9 годин, отже, він виконує 1/9 роботи за 1 годину.

Коли майстер та учень працюють разом протягом 1 години, їхні внески в роботу додаються. Тобто, за 1 годину сумісної роботи вони виконують:

1/4 (майстер) + 1/9 (учень) = (9/36) + (4/36) = 13/36 роботи.

Отже, після однієї години сумісної роботи майстра та учня залишиться не виконаною частина роботи, яка становить:

1 - 13/36 = 23/36 частини роботи.

Відповідь: Після однієї години сумісної роботи майстра та учня залишиться не виконаною 23/36 частина роботи.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Work Done by the Master and the Student

To determine the portion of the work that remains unfinished after one hour of combined work by the master and the student, we need to calculate the rate at which each of them completes the work.

Let's assume that the total work to be done is represented by the variable W.

According to the given information: - The master can complete the work in 4 hours, which means the master's work rate is W/4 per hour. - The student can complete the same work in 9 hours, which means the student's work rate is W/9 per hour.

To find the portion of the work remaining after one hour of combined work, we need to calculate the total work done by the master and the student in one hour.

The work done by the master in one hour is (W/4) * 1 = W/4.

The work done by the student in one hour is (W/9) * 1 = W/9.

The total work done by the master and the student in one hour is (W/4) + (W/9).

Calculation of the Remaining Work

To find the remaining work after one hour of combined work, we subtract the total work done in one hour from the total work that needs to be done.

The remaining work after one hour is W - [(W/4) + (W/9)].

Simplifying the expression, we get:

W - (9W + 4W) / 36

Combining like terms, we have:

W - 13W / 36

Simplifying further, we get:

23W / 36

Therefore, after one hour of combined work by the master and the student, 23W / 36 of the work will remain unfinished.

Please note that the above calculation assumes that the work rates of the master and the student remain constant throughout the entire duration of the work.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Work Done by the Master and the Student

To determine the portion of the work that remains unfinished after one hour of combined work by the master and the student, we need to calculate the rate at which each of them completes the work.

Let's assume that the total work to be done is represented by the variable W.

According to the given information: - The master can complete the work in 4 hours, which means the master's work rate is W/4 per hour. - The student can complete the same work in 9 hours, which means the student's work rate is W/9 per hour.

To find the portion of the work remaining after one hour of combined work, we need to calculate the total work done by the master and the student in one hour.

The work done by the master in one hour is (W/4) * 1 = W/4.

The work done by the student in one hour is (W/9) * 1 = W/9.

The total work done by the master and the student in one hour is (W/4) + (W/9).

Calculation of the Remaining Work

To find the remaining work after one hour of combined work, we subtract the total work done in one hour from the total work that needs to be done.

The remaining work after one hour is W - [(W/4) + (W/9)].

Simplifying the expression, we have:

W - (9W + 4W) / 36

Combining like terms, we get:

W - 13W / 36

Simplifying further, we have:

23W / 36

Therefore, after one hour of combined work by the master and the student, 23W / 36 of the work will remain unfinished.

Please note that the above calculation assumes that the work rates of the master and the student remain constant throughout the entire duration of the work.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос