Вопрос задан 05.12.2023 в 10:14. Предмет Математика. Спрашивает Сангурова Елизавета.

Решите систему неравенств: 1) {x> 1, x> 2,5; 2) {- 2x <-3, x <3; 3) {x <1,5, x>

-2; 4) {4-5x> -1,1 / 6x <2; 5) {0,6x> 9,1 / 3x <2; 6) {9x> 0,1 / 7x> -1. Смотреть ответ tansykpayevazhanel tansykpayevazhanel Ответ:вотПошаговое объяснение:понасльжпчыо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solution to the System of Inequalities:

To solve the given system of inequalities, let's solve each inequality separately and then find the intersection of the solution sets.

1) {x > 1, x > 2.5}: - The first inequality, x > 1, represents all values of x greater than 1. - The second inequality, x > 2.5, represents all values of x greater than 2.5. - Taking the intersection of these two solution sets, we find that x > 2.5.

2) {-2x < -3, x < 3}: - The first inequality, -2x < -3, can be rewritten as x > 3/2. - The second inequality, x < 3, represents all values of x less than 3. - Taking the intersection of these two solution sets, we find that x > 3/2.

3) {x < 1.5, x > -2}: - The first inequality, x < 1.5, represents all values of x less than 1.5. - The second inequality, x > -2, represents all values of x greater than -2. - Taking the intersection of these two solution sets, we find that -2 < x < 1.5.

4) {4-5x > -1.1, 6x < 2}: - The first inequality, 4-5x > -1.1, can be rewritten as x < 1.42. - The second inequality, 6x < 2, represents all values of x less than 1/3. - Taking the intersection of these two solution sets, we find that x < 1/3.

5) {0.6x > 9.1, 3x < 2}: - The first inequality, 0.6x > 9.1, can be rewritten as x > 15.17. - The second inequality, 3x < 2, represents all values of x less than 2/3. - Taking the intersection of these two solution sets, we find that x > 15.17.

6) {9x > 0.1, 7x > -1}: - The first inequality, 9x > 0.1, can be rewritten as x > 0.011. - The second inequality, 7x > -1, represents all values of x greater than -1/7. - Taking the intersection of these two solution sets, we find that x > 0.011.

Final Solution:

The solution to the given system of inequalities is: - x > 2.5 - -2 < x < 1.5 - x < 1/3 - x > 15.17 - x > 0.011

Please note that these solutions are based on the given inequalities and their intersections.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос