Вопрос задан 23.11.2023 в 18:00. Предмет Математика. Спрашивает Sokolovich Alina.

A sum of $2700 is to be given in the form of 63 prizes. If the prize is of either $100 or $25, find

the number of prizes of each type. I'll give 40 point for a detail explanation please:)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юдин Андрей.

Ответ:

15 prizes of $100 and 48 prizes of $25

Пошаговое объяснение:

Let the number of $100 prizes be x and the number of $25 prizes be y. Then we have two equations:

x + y = 63 (total prizes are 63) 100x + 25y = 2700 (total prizes are $2700)

We can solve for x and y using substitution or elimination. Here we will use replacement.

From the first equation, we have y = 63 - x. Substituting this into the second equation, we get:

100x + 25(63 - x) = 2700

Simplifying and solving for x, we get:

75x + 1575 = 2700

75x = 1125

x = 15

So there are 15 prizes of $100 each. Substituting this back into the equation y = 63 - x, we get:

y = 63 - 15

y = 48

So there are 48 prizes of $25 each.

So there are 15 prizes of $100 and 48 prizes of $25.

0 0
Отвечает Афонина Варвара.

$100 prizes be x and the number of $25 prizes be y.

total number of prizes is 63, so:

x + y = 63

total amount of money in prizes is $2700, so:

100x + 25y = 2700

We can use the first equation to solve for x in terms of y:

x = 63 - y

substitute this expression for x in the second equation:

100(63 - y) + 25y = 2700

Expanding and simplifying:

6300 - 100y + 25y = 2700

-75y = -3600

y = 48

So there are 48 prizes of $25.

substitute this value for y in the equation x + y = 63 to find x:

x + 48 = 63

x = 15

So there are 15 prizes of $100.

there are 15 prizes of $100 and 48 prizes of $25.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To find the number of prizes of each type, let's assume the number of prizes of $100 is 'x' and the number of prizes of $25 is 'y'.

We are given that the sum of the prizes is $2700 and the total number of prizes is 63. We can set up the following equations based on this information:

1. The total sum of the $100 prizes is $100 times the number of $100 prizes, which is 100x. 2. The total sum of the $25 prizes is $25 times the number of $25 prizes, which is 25y. 3. The total number of prizes is the sum of the number of $100 prizes and the number of $25 prizes, which is x + y.

Based on the given information, we can set up the following equations:

Equation 1: 100x + 25y = 2700 Equation 2: x + y = 63

To solve these equations, we can use substitution or elimination method. Let's use the elimination method:

Multiply Equation 2 by 25

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос