Вопрос задан 21.11.2023 в 04:51. Предмет Математика. Спрашивает Кабанов Данил.

Помогите пожалуйста решить .В классе 38 человек. Из них 16 играют в баскетбол, 17 - в хоккей, 18 -

в футбол. Увлекаются двумя видами спорта - баскетболом и хоккеем - четверо, баскетболом и футболом - трое, футболом и хоккеем - пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом. Сколько ребят увлекается лишь одним из этих видов спорта?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бастракова Наташа.

Ответ:

Давайте обозначим количество людей, которые играют только в баскетбол, только в хоккей и только в футбол соответственно как a, b и c. Также обозначим количество людей, которые увлекаются двумя видами спорта как d, e и f. Тогда согласно условию задачи:

a + d + e + 3 = 38

b + d + e + f + 4 = 38

c + e + f + 5 = 38

Также мы знаем, что a + d + 3 = 16, b + d + f + 4 = 17 и c + e + f + 5 = 18.

Решая данную систему уравнений можно найти количество людей, которые увлекаются только одним видом спорта:

a + b + c = 7

Итак, в нашем классе 7 учеников, которые играют в один спорт.

0 0
Отвечает Королькевич Клим.

Відповідь:

Покрокове пояснення:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the following information: - There are 38 students in the class. - 16 students play basketball. - 17 students play hockey. - 18 students play football. - 4 students play basketball and hockey. - 3 students play basketball and football. - 5 students play football and hockey. - 3 students do not play any of the three sports.

We need to determine how many students are interested in only one of these sports.

Solution

To solve this problem, we can use the principle of inclusion-exclusion. We will calculate the total number of students who play each sport individually and then subtract the number of students who play multiple sports.

Let's calculate the number of students who play each sport individually:

- Number of students who play basketball: 16 - Number of students who play hockey: 17 - Number of students who play football: 18

Now, let's calculate the number of students who play multiple sports:

- Number of students who play basketball and hockey: 4 - Number of students who play basketball and football: 3 - Number of students who play football and hockey: 5

To find the total number of students who play only one sport, we need to subtract the number of students who play multiple sports from the total number of students who play each sport individually.

- Number of students who play only basketball: 16 - (4 + 3) = 9 - Number of students who play only hockey: 17 - (4 + 5) = 8 - Number of students who play only football: 18 - (3 + 5) = 10

Finally, we add up the number of students who play only one sport:

- Total number of students who play only one sport: 9 + 8 + 10 = 27

Therefore, there are 27 students who are interested in only one of these sports.

Answer

There are 27 students who are interested in only one of the three sports mentioned.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос