
Задание 1: Решил уравнения 4класс 823-25-х=208 5*6*а=2100 Х÷5=900÷30 Задание 2: Решите задачу.
Составьте обратную ей задачу и решил её. Теплоход по течению реки плыл 4 ч со скоростью 80 км/ч, а на обратном пути он плыл 5 ч. С какой скоростью Теплоход плыл на обратном пути? Задание 3 . Для национального костюма мастерская израсходовала 5 упаковок бисера, по 150 бусинки в каждой. После этого ей осталось пришить ещё 280 бусинки. Сколько всего бусинки по требовалось мастерице?

Ответы на вопрос

Ответ:
1)823-25-х=208
798-х=208
х=798-208
х=590
2)t1-4ч
v1-40 км\ч
t2-5ч
V2-?
V=s\t
80*4\5=320\5=64 км\час
Пошаговое объяснение:



823-25-х=208
798-х=208
-х=208-798
-х=-590
Х=590
5*6*а=2100
30а=2100
А=70
х\5=900\30
30х=4500
х=150



Task 1: Solving Equations
To solve the given equations, let's go through them one by one:
1. Equation 1: 823 - 25 - x = 208 To solve for x, we need to isolate it on one side of the equation. Let's simplify the equation step by step: - Subtract 823 and 25 from both sides: 823 - 25 - x - 823 - 25 = 208 - 823 - 25 - Simplify: -x = -640 - Multiply both sides by -1 to isolate x: -1 * -x = -1 * -640 - Simplify: x = 640
Therefore, the solution to the equation 823 - 25 - x = 208 is x = 640.
2. Equation 2: 5 * 6 * a = 2100 To solve for a, we need to isolate it on one side of the equation. Let's simplify the equation step by step: - Multiply 5, 6, and a: 5 * 6 * a = 2100 - Simplify: 30a = 2100 - Divide both sides by 30 to isolate a: (30a) / 30 = 2100 / 30 - Simplify: a = 70
Therefore, the solution to the equation 5 * 6 * a = 2100 is a = 70.
3. Equation 3: x ÷ 5 = 900 ÷ 30 To solve for x, we need to isolate it on one side of the equation. Let's simplify the equation step by step: - Divide both sides by 5: (x ÷ 5) = (900 ÷ 30) ÷ 5 - Simplify: x = (900 ÷ 30) ÷ 5 - Simplify further: x = 30 ÷ 5 - Simplify: x = 6
Therefore, the solution to the equation x ÷ 5 = 900 ÷ 30 is x = 6.
Task 2: Reverse Problem and Solution
The original problem states that a boat traveled downstream for 4 hours at a speed of 80 km/h and then traveled upstream for 5 hours. We need to find the speed of the boat on the return trip.
To solve this problem, we can use the formula: speed = distance / time.
Let's assume the distance traveled downstream and upstream is the same. Therefore, the distance traveled downstream is equal to the distance traveled upstream.
Let's say the distance is d km.
1. Downstream trip: - Speed = 80 km/h - Time = 4 hours - Distance = Speed * Time = 80 km/h * 4 hours = 320 km
2. Upstream trip: - Speed = ? - Time = 5 hours - Distance = Speed * Time = d km
Since the distance traveled downstream and upstream is the same, we can equate the distances:
320 km = d km
Therefore, the distance traveled downstream and upstream is 320 km.
Now, let's solve for the speed of the boat on the return trip:
Speed = Distance / Time = 320 km / 5 hours = 64 km/h
Therefore, the speed of the boat on the return trip is 64 km/h.
Task 3: Bead Calculation
The workshop used 5 packs of beads, with 150 beads in each pack, for a total of 5 * 150 = 750 beads.
After using these beads, the workshop still needs to sew on an additional 280 beads.
Therefore, the total number of beads required by the workshop is 750 + 280 = 1030 beads.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili