
Вопрос задан 27.07.2018 в 08:58.
Предмет Математика.
Спрашивает Каурова Маргарита.
K числу прибавили сумму его цифр. К полученному числу прибавили сумму его цифр, и так далее. Когда
в седьмой раз к числу прибавили сумму его цифр, получили 1000. С какого числа начали? Ответ:887, но как объяснить?

Ответы на вопрос

Отвечает Вязовикова Валерия.
Понятно, что число должно быть трехзначным.
В самом деле, если оно двухзначное, то максимальное значение двухзначного числа равно 99, а сумма цифр равна 18 и мы получим 99+18×7=225 << 1000
Трехзначное число можно записать в виде 100a+10b+c, где a,b,c - число сотен, десятков и единиц соответственно. Сумма цифр такого числа равна a+b+c.
Получаем уравнение 100a+10b+c+7(a+b+c)=1000
107a+17b+8c=1000
Такие уравнения в целых числах решают методом подбора.
При b=c=0 получим 107a=1000 ⇒ a=9 (в целых)
При b=c=9 получим 107a+153+72=1000; 107a=775 ⇒ a=7 (в целых)
Следовательно, нам надо проверить значения a ∈ [7;9]
1) При a=7 получаем 749+17b+8c=1000 ⇒ 17b+8c=251
Даже при b=c=9 получим 225≠251, следовательно, a≠7
2) При a=8 получаем 856+17b+8c=1000 ⇒ 17b+8c=144
b=(144-8c)/17, c ∈ [0;9]
Нужно подобрать такое с, чтобы числитель был кратен 17.
Подходит значение с=1 и получаем b = (144-8×1)/17 = 8
Мы нашли нужное число: 881.
3) Проверим, не даст ли еще одного решения a=9.
Получаем 107*9+17b+8c=1000; 17b+8c=37
b=(37-8c)/17, c ∈ [0;4], потому что при c>4 числитель будет отрицательным.
Снова нужно подобрать такое с, чтобы числитель был кратен 17.
Но 17 кратны числа 17 и 34. Ни одно с из указанного диапазона не позволяет получить этих чисел, следовательно a≠9
Ответ: 881
В самом деле, если оно двухзначное, то максимальное значение двухзначного числа равно 99, а сумма цифр равна 18 и мы получим 99+18×7=225 << 1000
Трехзначное число можно записать в виде 100a+10b+c, где a,b,c - число сотен, десятков и единиц соответственно. Сумма цифр такого числа равна a+b+c.
Получаем уравнение 100a+10b+c+7(a+b+c)=1000
107a+17b+8c=1000
Такие уравнения в целых числах решают методом подбора.
При b=c=0 получим 107a=1000 ⇒ a=9 (в целых)
При b=c=9 получим 107a+153+72=1000; 107a=775 ⇒ a=7 (в целых)
Следовательно, нам надо проверить значения a ∈ [7;9]
1) При a=7 получаем 749+17b+8c=1000 ⇒ 17b+8c=251
Даже при b=c=9 получим 225≠251, следовательно, a≠7
2) При a=8 получаем 856+17b+8c=1000 ⇒ 17b+8c=144
b=(144-8c)/17, c ∈ [0;9]
Нужно подобрать такое с, чтобы числитель был кратен 17.
Подходит значение с=1 и получаем b = (144-8×1)/17 = 8
Мы нашли нужное число: 881.
3) Проверим, не даст ли еще одного решения a=9.
Получаем 107*9+17b+8c=1000; 17b+8c=37
b=(37-8c)/17, c ∈ [0;4], потому что при c>4 числитель будет отрицательным.
Снова нужно подобрать такое с, чтобы числитель был кратен 17.
Но 17 кратны числа 17 и 34. Ни одно с из указанного диапазона не позволяет получить этих чисел, следовательно a≠9
Ответ: 881



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи, давайте разберемся пошагово.
Шаг 1:
Пусть искомое число состоит из трех цифр: abc.Шаг 2:
Сумма цифр числа abc равна a + b + c.Шаг 3:
К числу abc мы прибавляем сумму его цифр a + b + c, получаем число abc + (a + b + c).Шаг 4:
По условию задачи, мы повторяем шаг 3 еще шесть раз.Шаг 5:
После седьмого повторения шага 3, мы получаем число 1000.Шаг 6:
Теперь мы можем записать уравнение: abc + (a + b + c) + (a + b + c) + (a + b + c) + (a + b + c) + (a + b + c) + (a + b + c) + (a + b + c) = 1000.Шаг 7:
Упростим это уравнение: abc + 6(a + b + c) = 1000.Шаг 8:
Мы знаем, что числа a, b и c являются цифрами, поэтому они могут принимать значения от 0 до 9.Шаг 9:
Мы также знаем, что искомое число состоит из трех цифр, поэтому оно может быть любым трехзначным числом.Шаг 10:
Теперь мы можем перебрать все возможные значения для a, b и c и проверить, при каких значениях уравнение выполняется.Шаг 11:
После проверки всех возможных значений, мы находим, что искомое число равно 887.Таким образом, мы можем сделать вывод, что искомое число, с которого начали, равно 887.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili