Вопрос задан 26.07.2018 в 18:51. Предмет Математика. Спрашивает Мамедов Омар-Хаям.

Один пешеход проходит путь из пункта А в пункт В за 3 ч, а другой пешеход из пункта В в пункт А -

за 6ч. Если оба пешехода выйдут одновременно из пунктов А и В соответственно навстречу друг другу, то через сколько часов они встретятся Надо решение!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Прус Виталий.
Ответ : они встретятся через 6 часов
все очень просто
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two pedestrians walking towards each other from points A and B. One pedestrian takes 3 hours to travel from A to B, while the other pedestrian takes 6 hours to travel from B to A. We need to determine how many hours it will take for them to meet if they start walking simultaneously.

Solution

To solve this problem, we can use the concept of relative speed. The relative speed between two objects moving towards each other is the sum of their individual speeds. We can calculate the relative speed between the two pedestrians and then use it to determine the time it will take for them to meet.

Let's denote the speed of the first pedestrian as v1 and the speed of the second pedestrian as v2. Since they are walking towards each other, their relative speed, v_rel, is the sum of their speeds:

v_rel = v1 + v2

We know that the first pedestrian takes 3 hours to travel from A to B, so we can calculate their speed as:

v1 = distance_AB / time_AB

Similarly, the second pedestrian takes 6 hours to travel from B to A, so their speed is:

v2 = distance_BA / time_BA

To find the distance between points A and B, we can assume that the distance is the same for both pedestrians. Therefore, we can set up the following equation:

distance_AB = distance_BA

Now, we can substitute the values of v1 and v2 into the equation for v_rel:

v_rel = (distance_AB / time_AB) + (distance_BA / time_BA)

Since distance_AB = distance_BA, we can simplify the equation to:

v_rel = (2 * distance_AB) / (time_AB + time_BA)

To find the time it will take for the pedestrians to meet, we can rearrange the equation:

time_meet = (2 * distance_AB) / v_rel

Let's calculate the time it will take for the pedestrians to meet.

Calculation

From the given information, we have: - time_AB = 3 hours - time_BA = 6 hours

Using the equation for relative speed, we can calculate v_rel:

v_rel = (2 * distance_AB) / (time_AB + time_BA)

Substituting the given values:

v_rel = (2 * distance_AB) / (3 + 6)

Simplifying:

v_rel = (2 * distance_AB) / 9

Now, we can calculate the time it will take for the pedestrians to meet:

time_meet = (2 * distance_AB) / v_rel

Substituting the value of v_rel:

time_meet = (2 * distance_AB) / ((2 * distance_AB) / 9)

Simplifying:

time_meet = 9

Therefore, the pedestrians will meet after 9 hours.

Answer

If both pedestrians start walking simultaneously from points A and B towards each other, they will meet after 9 hours.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос