Вопрос задан 26.10.2023 в 10:04. Предмет Математика. Спрашивает Москвин Ник.

Мнимые числа. (1+i^9)^3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романенко Ирина.
Решение в приложении.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с выражением (1 + i^9)^3.

Сначала определим, что такое i^9. i - это мнимая единица, которая определена как корень из -1, то есть i = √(-1). Теперь возведем i в 9-ю степень:

i^9 = (i^2)^4 * i = (-1)^4 * i = 1 * i = i.

Теперь мы знаем, что i^9 равно i.

Теперь вернемся к нашему выражению (1 + i^9)^3:

(1 + i^9)^3 = (1 + i)^3.

Чтобы возвести (1 + i) в третью степень, мы можем воспользоваться биномом Ньютона:

(1 + i)^3 = 1^3 + 31^2i + 31i^2 + i^3 = 1 + 3i + 3i^2 + i^3.

Теперь вычислим значения i^2 и i^3:

i^2 = (-1)^2 = 1, i^3 = i * i^2 = i * 1 = i.

Теперь подставим эти значения обратно в выражение:

1 + 3i + 3i^2 + i^3 = 1 + 3i + 3 * 1 + i = 4 + 4i.

Итак, (1 + i^9)^3 равно 4 + 4i.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос