
сколько чётных пятизначных чисел, все цифры которых различны, можно записать использую цифры 3, 4,
5, 7, 9 

Ответы на вопрос

Ну смотри, у тебя единственное четное число здесь это 4.
Значит, четверка будет стоять в конце.
У тебя остается 4 передних места в пятизначном числе для 4 цифр:
3, 5, 7 и 9.
На первое место можно поставить любое из этих 4 чисел, то есть 4
варианта.
На второе место можно поставить любое из 3 оставшихся чисел, так как у нас пятизначное число состоит из различных цифр, а значит, каждая из цифр может использоваться в пятизначном числе не больше одного раза. То есть еще 3 варианта.
На третье место можно поставить любое из оставшихся 2 чисел,
то есть еще 2 варианта.
На четвертое место можно поставить последнее оставшееся 1 число, то есть еще 1 вариант.
На пятом месте как раз стоит четверка.
Теперь перемножаем все варианты:
4*3*2*1*1=24 пятизначных числа можно составить.
Ответ: 24 пятизначных числа.



Для создания чётного пятизначного числа, в последнем разряде должна быть чётная цифра. Из набора цифр 3, 4, 5, 7, 9 только 4 и 5 являются чётными.
Поскольку все цифры должны быть различными, то всего у нас есть 5 вариантов для выбора первой цифры, 4 варианта для выбора второй цифры, 3 варианта для третьей цифры, 2 варианта для четвёртой цифры и 1 вариант для пятой (чётной) цифры.
Таким образом, общее количество чётных пятизначных чисел, все цифры которых различны, которые можно создать из цифр 3, 4, 5, 7, 9, составляет:
5 * 4 * 3 * 2 * 1 * 2 = 240 чисел.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili