
|x+3|>2 |x-7|>0 |x-4|>3 решите


Ответы на вопрос





10>2



|x+3| > 2 This inequality means that the absolute value of (x+3) is greater than 2. We can solve it by breaking it into two separate inequalities: 1) x+3 > 2 2) x+3 < -2
Solving the first inequality: x+3 > 2 x > 2-3 x > -1
Solving the second inequality: x+3 < -2 x < -2-3 x < -5
So the solution to |x+3| > 2 is -5 < x < -1.
|x-7| > 0 This inequality means that the absolute value of (x-7) is greater than 0, which is always true. So the solution to this inequality is all real numbers.
|x-4| > 3 This inequality means that the absolute value of (x-4) is greater than 3. We can solve it by breaking it into two separate inequalities: 1) x-4 > 3 2) x-4 < -3
Solving the first inequality: x-4 > 3 x > 3+4 x > 7
Solving the second inequality: x-4 < -3 x < -3+4 x < 1
So the solution to |x-4| > 3 is x < 1 or x > 7.
Overall, the solution to the given inequalities is -5 < x < -1 and x < 1 or x > 7.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili