Вопрос задан 06.10.2023 в 13:26. Предмет Математика. Спрашивает Воронцова Виктория.

Сколькими способами можно изготовить трёхцветный флаг с горизонтальными полосами, если имеется

материал 6 различных цветов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Быков Артем.

Ответ:

C_6^3 * 3! = 20 * 6 = 120

Пошаговое объяснение:

Выбираем три цвета из шести различных - C_6^3

Располагаем три цвета всеми способами 3!

Число сочетаний - C_n^k = \frac{n!}{k!(n -k)!}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для изготовления трёхцветного флага с горизонтальными полосами из 6 различных цветов, у нас есть несколько вариантов.

Предположим, что у нас есть цвета A, B, C, D, E и F. Мы можем выбрать 3 из этих цветов для трёх полос на флаге.

Используя комбинаторику сочетаний, количество способов выбрать 3 цвета из 6 можно выразить следующим образом:

C(6, 3) = 6! / (3!(6-3)!) = 20 способов.

Теперь, когда у нас есть выбранные 3 цвета для полос, мы можем их расположить на флаге. Это можно сделать только одним способом, так как горизонтальные полосы всегда идут сверху вниз.

Итак, общее количество способов изготовления трёхцветного флага с горизонтальными полосами из 6 различных цветов равно 20 способам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос