
1)(x+2)(x-2)-x(x-6)=0 2)3x(4x+12x)-(6x-1)(6x+1)=11x 3)(x+7)(x-7)-(3x-1)(x+1)=4-2x^2


Ответы на вопрос

Ответ:
1) (x+2)(x-2)-x(x-6)=0
раскроем скобки
x2-2x+2x-4-x2+6x = 0
6x-4 = 0
6x = 4
x =
x =
2) 3x(4x+12x)-(6x-1)(6x+1)=11x
раскроем скобки
12x2+36x2-36x2-6x+6x+1 = 11x
12x2-11x+1 = 0
Вычислим дискриминант D
D = b2 - 4ac = ( – 11)2 – 4·12·( + 1) = 73
x1 = 11 + √ 73
24
x2 = 11 – √ 73
24
3)(x+7)(x-7)-(3x-1)(x+1)=4-2x2
раскроем скобки
x2-7x+7x-49-3x2-3x+x+1 = 4-2x2
-2x-52 = 0
2x+52 = 0
2x = -52
x = -26
Пошаговое объяснение:



Let's solve each of these equations step by step:
- (x+2)(x-2) - x(x-6) = 0
First, expand and simplify both sides of the equation:
(x^2 - 4) - (x^2 - 6x) = 0
Now, distribute the negative sign on the second term:
x^2 - 4 - x^2 + 6x = 0
Now, combine like terms:
6x - 4 = 0
Add 4 to both sides:
6x = 4
Now, divide both sides by 6 to isolate x:
x = 4/6
Simplify the fraction:
x = 2/3
So, the solution to this equation is x = 2/3.
- 3x(4x+12x) - (6x-1)(6x+1) = 11x
First, simplify both sides of the equation:
3x(16x) - (36x^2 - 1) = 11x
Now, distribute the 3x on the left side:
48x^2 - (36x^2 - 1) = 11x
Now, distribute the negative sign on the right side:
48x^2 - 36x^2 + 1 = 11x
Combine like terms on the left side:
12x^2 + 1 = 11x
Now, move all terms to one side to set the equation to zero:
12x^2 - 11x + 1 = 0
This is a quadratic equation. You can solve it using the quadratic formula:
x = [-b ± √(b^2 - 4ac)] / (2a)
In this case, a = 12, b = -11, and c = 1. Plug these values into the formula:
x = [-(-11) ± √((-11)^2 - 4(12)(1))] / (2(12))
x = (11 ± √(121 - 48)) / 24
x = (11 ± √73) / 24
So, the solutions to this equation are:
x = (11 + √73) / 24 x = (11 - √73) / 24
- (x+7)(x-7) - (3x-1)(x+1) = 4 - 2x^2
First, expand and simplify both sides of the equation:
(x^2 - 49) - (3x^2 + 2x - 1) = 4 - 2x^2
Now, distribute the negative sign on the right side:
x^2 - 49 - 3x^2 - 2x + 1 = 4 - 2x^2
Combine like terms on both sides:
-x^2 - 2x - 48 = 4 - 2x^2
Now, move all terms to one side to set the equation to zero:
-x^2 - 2x - 48 - 4 + 2x^2 = 0
Simplify:
-x^2 - 52 = 0
Multiply the equation by -1 to make it easier to work with:
x^2 + 52 = 0
This is a quadratic equation. You can solve it using the quadratic formula:
x = [-b ± √(b^2 - 4ac)] / (2a)
In this case, a = 1, b = 0, and c = 52. Plug these values into the formula:
x = [0 ± √(0 - 4(1)(52))] / (2(1))
x = [0 ± √(-208)] / 2
Since the discriminant (the value inside the square root) is negative, there are no real solutions to this equation. The solutions are complex numbers:
x = ±√(208)i / 2
So, the solutions are:
x = (√208)i / 2 x = (-√208)i / 2


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili