Вопрос задан 06.10.2023 в 02:39.
Предмет Математика.
Спрашивает Синицкая Оля.
Перпендикулярны ли векторы а {-6;9} и b {4;4}
Ответы на вопрос
Отвечает Юрченко Надя.
Ответ:не перпендикулярны
Пошаговое объяснение:
Скалярное произведение этих векторов a * b = -6 * 4 + 9* 4 = -24+36=10 ,т.е не равно 0, поэтому не перпендикулярны.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для определения, перпендикулярны ли два вектора, вы можете воспользоваться следующим правилом: векторы перпендикулярны, если их скалярное произведение равно нулю.
Скалярное произведение векторов a и b можно вычислить следующим образом:
a · b = (a₁ * b₁) + (a₂ * b₂)
где a₁ и a₂ - компоненты вектора a, а b₁ и b₂ - компоненты вектора b.
Давайте вычислим скалярное произведение ваших векторов:
a = {-6; 9} b = {4; 4}
a · b = (-6 * 4) + (9 * 4) = (-24) + (36) = 12
Скалярное произведение векторов a и b равно 12, и оно не равно нулю. Это означает, что векторы a и b не перпендикулярны друг другу.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
