
2sin^2x/cosx+1=1 Помогите пожалуйста)


Ответы на вопрос

2sin²x/(cosx+1)=1,
cosx+1≠0, cosx≠-1
2sin²x=cosx+1,
2*(1-cos²x)-cosx-1=0
2-2cos²x-cosx-1=0
2cos²x+cosx-1=0
cosx=t, t∈(-1;1]
2t²+t-1=0
t₁=-1, t₂=1/2
обратная замена:
t=1/2, cosx=1/2, x=+-arccos(1/2)+2πn, n∈Z, x=+-π/3+2πn, n∈Z



Solving the Equation 2sin^2x/cosx+1=1
To solve the equation 2sin^2x/cosx+1=1, we can start by simplifying the equation and then solving for x.
First, let's simplify the equation: 2sin^2x/cosx + 1 = 1 2sin^2x/cosx = 0
Now, let's solve for x using the given information from the search results.
The search results provide various trigonometric equations and identities, but they don't directly address the specific equation 2sin^2x/cosx+1=1. However, we can use the trigonometric identities to solve the equation.
Using the identity sin^2(x) + cos^2(x) = 1, we can rewrite sin^2(x) in terms of cos(x): sin^2(x) = 1 - cos^2(x)
Substituting sin^2(x) = 1 - cos^2(x) into the original equation: 2(1 - cos^2(x))/cos(x) = 0 2 - 2cos^2(x))/cos(x) = 0 2cos(x) - 2cos^3(x) = 0 2cos(x)(1 - cos^2(x)) = 0 2cos(x)sin^2(x) = 0
From this point, we can see that the equation simplifies to 2cos(x)sin^2(x) = 0. This equation has solutions when either cos(x) = 0 or sin(x) = 0.
Therefore, the solutions for x are: - When cos(x) = 0, x = ±π/2 + πk, where k is an integer. - When sin(x) = 0, x = πn, where n is an integer.
So, the solutions for the equation 2sin^2x/cosx+1=1 are x = ±π/2 + πk and x = πn, where k and n are integers.
I hope this helps! If you have further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili