Вопрос задан 30.09.2023 в 03:22. Предмет Математика. Спрашивает Галимова Диана.

Экскурсанты за день прошли 8 км. С утра они шли 3 час(-а), а после обеда — ещё 2 час(-а). Сколько

километров экскурсанты прошли утром, если после обеда их скорость снизилась на 2 км/ч. С какой скоростью шли экскурсанты утром? Экскурсанты утром прошли ... км со скоростью ... км/ч.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Trushevska Nikoletta.

Ответ:

Пошаговое объяснение:

3x + 2(x - 2) = 8

3x + 2x - 4 = 8

5x = 8+4

5x = 12

x = 12:5

x = 2,4км/ч скорость утром

2,4*3 = 7,2км экскурсанты прошли утром

Экскурсанты утром прошли 7,2 км со скоростью 2,4 км/ч.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим неизвестные значения:

Пусть утром экскурсанты прошли "x" километров, а их скорость утром была "v" км/ч.

Мы знаем, что экскурсанты за день прошли 8 км и утром шли 3 часа, а после обеда ещё 2 часа. Мы также знаем, что после обеда их скорость снизилась на 2 км/ч.

Из этой информации мы можем создать два уравнения:

  1. Уравнение для расстояния: Утром они прошли "x" километров, и после обеда прошли (8 - x) километров. Таким образом, у нас есть уравнение: x + (8 - x) = 8

  2. Уравнение для времени: Утром они шли 3 часа, а после обеда ещё 2 часа, в сумме 5 часов. Мы знаем, что расстояние равно скорость умноженная на время, так что: x/v + (8 - x)/(v - 2) = 5

Теперь у нас есть система из двух уравнений. Мы можем решить её для "x" и "v".

Первое уравнение просто говорит нам, что сумма утреннего и послеобеденного пути равна 8 км:

x + (8 - x) = 8

Упростим это уравнение:

8 = 8

Это верно для любых значений "x" и "v", поэтому оно не дает нам дополнительной информации.

Теперь рассмотрим второе уравнение:

x/v + (8 - x)/(v - 2) = 5

Мы знаем, что 8 = 8, поэтому мы можем упростить это уравнение:

x/v + (8 - x)/(v - 2) = 8/v + (8 - x)/(v - 2) = 5

Теперь мы можем умножить обе стороны на v(v - 2), чтобы избавиться от дробей:

5v(v - 2) = 8v + 8(v - 2)

Раскроем скобки:

5v^2 - 10v = 8v + 8v - 16

Теперь упростим это уравнение:

5v^2 - 10v - 16 = 0

Теперь у нас есть квадратное уравнение, которое мы можем решить с помощью квадратного уравнения. Выразим "v":

v = (-b ± √(b^2 - 4ac)) / (2a)

где a = 5, b = -10, и c = -16.

v = (-(-10) ± √((-10)^2 - 4 * 5 * (-16))) / (2 * 5) v = (10 ± √(100 + 320)) / 10 v = (10 ± √420) / 10

Теперь рассмотрим два возможных значения для "v":

  1. v = (10 + √420) / 10
  2. v = (10 - √420) / 10

Теперь мы можем использовать одно из этих значений "v", чтобы найти "x" из первого уравнения:

  1. Для v = (10 + √420) / 10:

x = 8 - (10 + √420) / 10

  1. Для v = (10 - √420) / 10:

x = 8 - (10 - √420) / 10

Таким образом, у нас есть два набора решений:

  1. Если v = (10 + √420) / 10, то x = 8 - (10 + √420) / 10
  2. Если v = (10 - √420) / 10, то x = 8 - (10 - √420) / 10

Мы можем вычислить значения "x" для обоих наборов решений, чтобы найти ответ.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос