Вопрос задан 29.09.2023 в 20:43. Предмет Математика. Спрашивает Мызгина Рита.

В стране дорогами соединены те пары городов, в названии которых есть хотя бы две пары одинаковых

букв. Построен граф этой страны. Сколько в нём вершин степени 4, если названия городов такие: Москва, Майкоп, Сочи, Памир, Чира, Абра, Засен?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Терентьева Даша.

Ответ:

Пошаговое объяснение:

я 8 насчитал

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с построения графа этой страны на основе заданных городов. Вершины графа будут представлять города, и между двумя вершинами будет проведено ребро, если в названиях соответствующих городов есть хотя бы две пары одинаковых букв.

Исходя из заданных городов:

  1. Москва - 2 одинаковых буквы "о".
  2. Майкоп - 2 одинаковых буквы "о" и 2 одинаковых буквы "и".
  3. Сочи - 2 одинаковых буквы "о".
  4. Памир - 2 одинаковых буквы "а".
  5. Чира - 2 одинаковых буквы "и".
  6. Абра - 2 одинаковых буквы "а".
  7. Засен - 2 одинаковых буквы "с".

Теперь мы можем построить граф:

  • Москва связана с Майкопом, так как оба города имеют две одинаковых буквы "о".
  • Москва также связана с Сочи.
  • Майкоп связан с Сочи из-за двух одинаковых букв "о" и "и".
  • Памир и Чира не связаны ни с одним другим городом, так как у них нет двух одинаковых букв в названиях.
  • Абра и Засен не связаны ни с одним другим городом по тем же причинам.

Итак, граф будет выглядеть следующим образом:

lua
Москва -- Майкоп | Сочи

Теперь давайте найдем вершины степени 4 в этом графе. Вершина степени 4 - это вершина, соединенная с четырьмя другими вершинами.

В данном графе такой вершины нет. Вершина Москва соединена только с Майкопом и Сочи, и у нее степень 2, а вершины Майкоп и Сочи также имеют степень 2.

Следовательно, в данном графе нет вершин степени 4.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос