Вопрос задан 27.09.2023 в 10:57. Предмет Математика. Спрашивает Дідушок Даша.

Решите уравнение:а)z-12/23=17/23 ;б)27/45-х=18/45+3/45; в)у-7/13=12/13-3/13

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Касихан Аида.

Ответ:

a) z-12/23=17/23
z=17/23+12/23
x=29/23 = \displaystyle \boxed{ 1\frac{6}{23}}

б) 27/45-х=18/45+3/45
3/5-х=7/15
-х=7/15-3/5
-х=-2/15
х=2/15

в) y-7/13=12/13-3/13
y=-7/13=9/13
y=9/13+7/13
y=16/13 = \displaystyle \boxed{1 \frac{3}{13}}

0 0
Отвечает Шаповалова Саша.

Ответ:

а) z - 12/23 = 17/23
z = 17/23 + 12/23
z = 17+12/23
z = 29/23
Выделяем целую часть, т.к. дробь неправильная.
z = 1 целая 6/23

б) 27/45 - x = 18/45 + 3/45
x - 27/45 = 21/45
x = 27/45 + 21/45 = 27+21/45
x = 48/45
Выделяем целую часть, т.к. дробь неправильная.
x = 1 целая 3/45
Сократим дробную часть (числитель и знаменатель на 3)
x = 1 целая 1/15

в) y - 7/13 = 12/13 - 3/13 = 12-3/13 = 9/13
y = 9/13 + 7/13
y = 16/13
Выделяем целую часть, т.к. дробь неправильная.
y = 1 целая 3/13

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данные уравнения:

а) z - 12/23 = 17/23

Для начала добавим 12/23 к обеим сторонам уравнения:

z - 12/23 + 12/23 = 17/23 + 12/23

Это упрощается до:

z = 29/23

б) 27/45 - x = 18/45 + 3/45

Сначала объединим правую сторону уравнения:

18/45 + 3/45 = 21/45

Теперь выразим x, вычитая 21/45 из обеих сторон:

27/45 - 21/45 = x

6/45 = x

Упростим дробь:

2/15 = x

в) y - 7/13 = 12/13 - 3/13

Сначала объединим правую сторону уравнения:

12/13 - 3/13 = 9/13

Теперь выразим y, добавив 7/13 к обеим сторонам:

y - 7/13 + 7/13 = 9/13 + 7/13

Это упрощается до:

y = 16/13

Итак, решения уравнений:

а) z = 29/23

б) x = 2/15

в) y = 16/13

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос