
Помогите, пожалуйста, найти координаты фокусов и уравнения директрис у параболы 4(у-1)=(х+2)^2


Ответы на вопрос

Каноническое уравнение параболы, у которой фокус расположен на прямой, параллельной оси Оу, имеет вид:
У нас знак р положителен, значит, ветви параболы направлены вверх.
На основании заданного уравнения параболы определяем, что вершина параболы имеет координаты (а; в) = (-2: 1).
Фокус и директриса находятся на прямой х = -2 и расположены выше и ниже вершины на величину р/2 =2/2 = 1.
Получаем:
- координаты фокуса F: (-2: 2),
- уравнение директрисы Д: у = 0 ( это ось абсцисс).



Для начала, давайте приведем данное уравнение параболы к каноническому виду, чтобы легче было идентифицировать фокусы и директрисы.
Исходное уравнение: 4(y - 1) = (x + 2)^2
Раскроем квадрат справа: 4(y - 1) = x^2 + 4x + 4
Теперь перенесем все члены на одну сторону уравнения: x^2 + 4x + (4y - 4) = 0
Для удобства, вынесем 4 из последнего члена: x^2 + 4x + 4(y - 1) = 0
Теперь поделим всё уравнение на 4: (1/4)x^2 + x + (y - 1) = 0
Теперь перепишем это уравнение так, чтобы в левой части был квадратичный член и линейный член: (1/4)x^2 + x + (y - 1) = 0
(1/4)(x^2 + 4x) + (y - 1) = 0
(1/4)(x^2 + 4x + 4) - 1 + (y - 1) = 0
(1/4)(x + 2)^2 + (y - 2) = 0
Теперь у нас есть уравнение параболы в каноническом виде: (1/4)(x + 2)^2 = -(y - 1)
Отсюда видно, что парабола открывается вниз и смещена на 1 единицу вверх по оси y. Теперь мы можем найти координаты фокуса и уравнение директрисы.
Фокус параболы находится на расстоянии p от вершины параболы, где p - фокусное расстояние. Для параболы вида (1/4)(x + h)^2 = 4p(y - k) фокусное расстояние равно p = 1/4.
Так как парабола смещена вверх на 1 единицу, вершина параболы находится в точке (-2, 1).
Фокусное расстояние (p) равно 1/4. Так как парабола открывается вниз, фокус будет находиться ниже вершины на расстояние p = 1/4:
Координаты фокуса: (-2, 1 - 1/4) = (-2, 3/4)
Теперь найдем уравнение директрисы. Директриса также находится на расстоянии p от вершины параболы, но в противоположном направлении. Так как парабола открывается вниз, директриса будет находиться выше вершины на расстояние p = 1/4.
Координаты точки на директрисе: (-2, 1 + 1/4) = (-2, 5/4)
Уравнение директрисы будет иметь вид: y = 5/4
Итак, координаты фокуса: (-2, 3/4), уравнение директрисы: y = 5/4.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili