
Lg 1/5 + log100 25 Найти значение выражения


Ответы на вопрос




To find the value of the expression "lg(1/5) + log100(25)," let's first simplify each term individually:
- lg(1/5): lg represents the base-10 logarithm. The expression lg(1/5) means "the logarithm of 1/5 with base 10." Since 10^x = 1/5, we need to find the value of x:
10^x = 1/5
Now, we know that 1/5 is the same as 5^(-1), so we can rewrite the equation as:
10^x = 5^(-1)
Now, we take the logarithm of both sides using the same base, which is 10:
lg(10^x) = lg(5^(-1))
The log of the exponent cancels out the base, and we get:
x = -1
So, lg(1/5) = -1.
- log100(25): log100 represents the base-100 logarithm. The expression log100(25) means "the logarithm of 25 with base 100." Since 100^x = 25, we need to find the value of x:
100^x = 25
Now, we know that 25 is the same as 5^2, so we can rewrite the equation as:
100^x = 5^2
Now, we take the logarithm of both sides using the same base, which is 100:
log100(100^x) = log100(5^2)
The log of the exponent cancels out the base, and we get:
x = 2
So, log100(25) = 2.
Now, we can find the value of the whole expression:
lg(1/5) + log100(25) = -1 + 2 = 1
The value of the expression is 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili