
3arctg(-1/v3)+2arccos(-v3/2)


Ответы на вопрос





To simplify the expression 3arctg(-1/v3) + 2arccos(-v3/2), we need to find the values of the individual trigonometric functions and then perform the arithmetic.
Let's start with each part of the expression:
- arctg(-1/v3): This represents the arctangent of (-1/v3).
The arctangent function is the inverse of the tangent function and gives us the angle whose tangent is a given value. In this case, we want to find the angle whose tangent is -1/v3.
arctg(-1/v3) = -π/6
- arccos(-v3/2): This represents the arccosine of (-v3/2).
The arccosine function is the inverse of the cosine function and gives us the angle whose cosine is a given value. In this case, we want to find the angle whose cosine is -v3/2.
arccos(-v3/2) = 5π/6
Now, we can substitute these values back into the original expression:
3arctg(-1/v3) + 2arccos(-v3/2) = 3(-π/6) + 2(5π/6) = -π/2 + 5π/3
To simplify further, we find a common denominator for -π/2 and 5π/3, which is 6:
-π/2 = -3π/6
5π/3 = 10π/6
So the expression becomes:
-3π/6 + 10π/6 = 7π/6
Therefore, the simplified value of the expression 3arctg(-1/v3) + 2arccos(-v3/2) is 7π/6.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili