(0.3)^log5(log1/5(x^2-4/5)<1
Ответы на вопрос
Let's solve the inequality step by step. First, rewrite the inequality as follows:
(0.3)^(log5(log(1/5(x^2-4/5))) < 1
Now, we can simplify the expression inside the logarithm:
log(1/5(x^2-4/5)) = log(1/5) + log(x^2-4/5)
Next, apply the logarithmic properties:
log(1/5) is a constant, let's call it "C".
So, the inequality becomes:
(0.3)^(log5(C + log(x^2-4/5))) < 1
Now, focus on the exponent of 0.3:
log5(C + log(x^2-4/5))
Since the base of the logarithm is 5, let's try to rewrite the equation using the change of base formula:
log_a(b) = log_c(b) / log_c(a)
Here, "a" is the base of the logarithm, "b" is the argument of the logarithm, and "c" is the new base.
Apply the change of base formula to the exponent:
log5(C + log(x^2-4/5)) = log(C + log(x^2-4/5)) / log(5)
Now the inequality becomes:
(0.3)^(log(C + log(x^2-4/5)) / log(5)) < 1
To simplify it further, consider the following property of exponentiation:
a^(b/c) = (a^b)^(1/c)
Apply this to our inequality:
[(0.3)^log(C + log(x^2-4/5))]^(1/log(5)) < 1
Now, we have:
0.3^(log(C + log(x^2-4/5))) < 1
Since the base 0.3 is between 0 and 1, raising it to any positive exponent will result in a number less than 1. Therefore, this inequality holds for any value of "x."
So, the solution to the inequality is all real numbers: (-∞, +∞).
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
