
Найти sin a + cos a, если sin 2a = 0.84, 3П/4 < a < П


Ответы на вопрос

Тогда найдём искомую сумму через квадратное уравнение: (sin a + cos a)^2=sin^2(a)+2sin a*cos a+cos^2(a)=1+2sinacosa=1+sin2a=1+0,84=1,84 => sin a + cos a =sqrt(1,84)=1,36.



To find the value of sin(a) + cos(a) given the information that sin(2a) = 0.84 and 3π/4 < a < π, we can use trigonometric identities and the given information.
First, let's use the double angle identity for sine:
sin(2a) = 2 * sin(a) * cos(a)
Since sin(2a) = 0.84, we can write:
0.84 = 2 * sin(a) * cos(a)
Now, we also know that 3π/4 < a < π. This means a is in the second quadrant where both sin(a) and cos(a) are negative.
Now, we need to find the values of sin(a) and cos(a) using the given information.
From the inequality 3π/4 < a < π, we can tell that a is in the second quadrant, where cos(a) is negative.
We can rearrange the equation we derived earlier:
sin(a) * cos(a) = 0.84 / 2
sin(a) * cos(a) = 0.42
- Since sin(a) and cos(a) are both negative in the second quadrant, we can write:
sin(a) = -√(1 - cos²(a))
Now, we can substitute this into the equation we derived in step 2:
-√(1 - cos²(a)) * cos(a) = 0.42
Solve for cos(a):
1 - cos²(a) = (0.42 / cos(a))²
1 - cos²(a) = 0.1764 / cos²(a)
Multiply through by cos²(a):
cos²(a) - cos⁴(a) = 0.1764
Let y = cos²(a):
y - y² = 0.1764
Rearrange as a quadratic equation:
y² - y + 0.1764 = 0
Now, we can solve this quadratic equation for y (cos²(a)).
Using the quadratic formula: y = [-b ± √(b² - 4ac)] / 2a
where a = 1, b = -1, and c = 0.1764
y = [1 ± √(1 - 4 * 1 * 0.1764)] / 2
y = [1 ± √(1 - 0.7056)] / 2
y = [1 ± √0.2944] / 2
y = [1 ± 0.5429] / 2
Now, we have two potential values for y:
- y = (1 + 0.5429) / 2 = 1.5429 / 2 ≈ 0.7715
- y = (1 - 0.5429) / 2 = 0.4571 / 2 ≈ 0.2286
However, since cos(a) is negative in the second quadrant, the second value (y ≈ 0.2286) is not applicable. Thus, we take the first value (y ≈ 0.7715).
cos²(a) ≈ 0.7715
Now, take the square root of both sides:
cos(a) ≈ √0.7715 ≈ 0.8783
Now that we have cos(a), we can find sin(a):
sin(a) = -√(1 - cos²(a))
sin(a) ≈ -√(1 - 0.7715) ≈ -√0.2285 ≈ -0.4780
Finally, to find sin(a) + cos(a):
sin(a) + cos(a) ≈ -0.4780 + 0.8783 ≈ 0.4003
So, sin(a) + cos(a) ≈ 0.4003.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili