(x-3)(x+5) больше или рано нулю.
Ответы на вопрос
To determine when the expression is greater than or equal to zero, we need to find the intervals for which the expression is positive or zero.
To do this, we can use the concept of interval notation and test the expression for different intervals of .
Step 1: Find the critical points (where the expression equals zero). To find the critical points, set equal to zero and solve for :
Set each factor to zero and solve for : --> -->
Step 2: Test the intervals between the critical points.
Now, we have three intervals to consider: , , and .
Step 3: Pick a test point from each interval and evaluate the expression.
For :
Pick a test point from , for example, .
Pick a test point from , for example, .
Pick a test point from , for example, .
Step 4: Determine the intervals where .
The expression is greater than zero () in the intervals and .
Step 5: Include the endpoints where .
Since the original question asks for "greater than or equal to zero," we need to include the critical points as well.
The expression is greater than or equal to zero () in the intervals and .
In interval notation, the solution is:
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
