
Tg (4х - π/6) = √3/3


Ответы на вопрос

Ответ: x=0,25*π*N+π/12



4х-п/6=П/6+пк 4х=2П/6+пк х=2П/24+п/4к х=П/12+п/4к



To solve the equation Tg(4x - π/6) = √3/3, we need to find the value of x.
First, let's clarify the notation. "Tg" likely refers to the tangent function, often denoted as "tan" in mathematical expressions. So, the equation can be rewritten as:
tan(4x - π/6) = √3/3
To find the value of x, we'll follow these steps:
Step 1: Isolate the tangent function Step 2: Take the inverse tangent (arctan) of both sides Step 3: Solve for x
Step 1: Isolate the tangent function tan(4x - π/6) = √3/3
Step 2: Take the inverse tangent (arctan) of both sides arctan(tan(4x - π/6)) = arctan(√3/3)
The inverse tangent (arctan) "undoes" the tangent function, leaving us with: 4x - π/6 = arctan(√3/3)
Step 3: Solve for x Now, isolate x by adding π/6 to both sides: 4x = arctan(√3/3) + π/6
Finally, divide both sides by 4 to get the value of x: x = (arctan(√3/3) + π/6) / 4
Now, using a calculator, you can find the approximate value of x. Keep in mind that the inverse tangent function might yield multiple solutions due to the periodic nature of the tangent function. The general solution can be expressed as:
x ≈ (arctan(√3/3) + π/6) / 4 + k * π/4
where k is an integer representing different solutions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili