
Решить неравенство: log2(4x^2-1)-log2(x)≤log2(5x+9/x-11)


Ответы на вопрос

2>1, знак сохраняем
с учетом ОДЗ,получаем ответ:



To solve the inequality log2(4x^2 - 1) - log2(x) ≤ log2(5x + 9/x - 11), we need to follow certain steps. Remember that for logarithms to be defined, the arguments must be positive.
Step 1: Combine the logarithms using logarithm rules. Step 2: Simplify the expression to a single logarithm if possible. Step 3: Eliminate the logarithm and solve the resulting inequality. Step 4: Check the validity of the solutions.
Let's proceed with the solution:
Step 1: Combine the logarithms using logarithm rules. log2(4x^2 - 1) - log2(x) ≤ log2(5x + 9/x - 11)
Step 2: Simplify the expression to a single logarithm if possible. Apply the quotient rule for logarithms, which states that log_a(b) - log_a(c) = log_a(b/c): log2((4x^2 - 1)/x) ≤ log2(5x + 9/x - 11)
Step 3: Eliminate the logarithm and solve the resulting inequality. To eliminate the logarithm, we can take both sides as the base 2 exponent:
(4x^2 - 1)/x ≤ (5x + 9/x - 11)
Step 4: Solve the inequality:
First, let's get rid of the fraction by multiplying both sides by x:
x(4x^2 - 1) ≤ x(5x + 9/x - 11)
Simplify:
4x^3 - x ≤ 5x^2 + 9 - 11x
Now, bring all terms to one side:
4x^3 - 5x^2 - x + 11 ≤ 9
Finally, set the inequality to zero:
4x^3 - 5x^2 - x + 2 ≤ 0
We need to solve this cubic inequality for x. The solution to cubic inequalities can be complex and involve different intervals. For a quick overview, we can observe that the polynomial has roots at x = 1/2, x = -1, and x = 2. These roots divide the real number line into four intervals: (-∞, -1), (-1, 1/2), (1/2, 2), and (2, ∞).
Now, we can test each interval to find the valid solution set:
For x < -1: Pick x = -2 (a value less than -1): 4(-2)^3 - 5(-2)^2 - (-2) + 2 = -30 (negative)
For -1 < x < 1/2: Pick x = 0 (a value between -1 and 1/2): 4(0)^3 - 5(0)^2 - (0) + 2 = 2 (positive)
For 1/2 < x < 2: Pick x = 1 (a value between 1/2 and 2): 4(1)^3 - 5(1)^2 - (1) + 2 = 0 (non-negative)
For x > 2: Pick x = 3 (a value greater than 2): 4(3)^3 - 5(3)^2 - (3) + 2 = 34 (positive)
From the above tests, we can see that the inequality is satisfied for the interval -1 < x < 1/2 and the interval 1/2 < x < 2.
Thus, the solution to the original inequality is: -1 < x < 1/2 OR 1/2 < x < 2.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili