
помогите решить пожалуйста задачу. рассматриваются четырёхзначное число и четврёхзначное число,
записанное теми же цифрами в обратном порядке. Какое наибольшее количество пятёрок может содержать десятичная запись их разности (из большего вычитается меньшее)?

Ответы на вопрос




Давайте рассмотрим задачу шаг за шагом. Пусть четырёхзначное число, записанное теми же цифрами в обратном порядке, равно X, а исходное четырёхзначное число равно Y.
Поскольку Y и X состоят из одних и тех же цифр, разность Y - X будет состоять из нулей и других цифр. Чтобы получить максимальное количество пятёрок в разности, нам нужно максимизировать значения цифр разности.
Для этого возьмем наибольшую возможную цифру на каждой позиции исходных чисел Y и X, чтобы получить максимальную разность. Вот пример:
Пусть Y = 9876, тогда X = 6789 (запись цифр в обратном порядке).
Теперь вычислим разность Y - X:
9876
- 6789
3087
Таким образом, максимальное количество пятёрок в разности равно 3.
Итак, ответ на задачу: наибольшее количество пятёрок, которое может содержать десятичная запись разности четырёхзначного числа и числа, записанного теми же цифрами в обратном порядке, равно 3.


Похожие вопросы


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili