
Log4(x-6)+logx-6(16)=3


Ответы на вопрос

Решение во вложении




To solve the equation log4(x - 6) + log(x - 6) = 16 = 3, we can use logarithmic properties to combine the logarithms. The following steps will lead us to the solution:
Step 1: Combine the logarithms using the product rule of logarithms: log4(x - 6)(x - 6) = 3
Step 2: Simplify the expression inside the logarithm: log4((x - 6)^2) = 3
Step 3: Use the definition of logarithms to rewrite the equation in exponential form: 4^3 = (x - 6)^2
Step 4: Calculate 4^3: 64 = (x - 6)^2
Step 5: Take the square root of both sides: ±√64 = √((x - 6)^2)
Step 6: Solve for x: x - 6 = ±√64
Step 7: Evaluate the square root of 64: x - 6 = ±8
Step 8: Solve for x in both cases: Case 1: x - 6 = 8 x = 8 + 6 x = 14
Case 2: x - 6 = -8 x = -8 + 6 x = -2
So, the two solutions to the equation are x = 14 and x = -2. However, we need to check if these values are valid since the logarithm of a negative number is not defined in the real number system.
For x = 14: log4(14 - 6) + log(14 - 6) = log4(8) + log(8) = 3 + 0 = 3 (valid)
For x = -2: log4(-2 - 6) + log(-2 - 6) = log4(-8) + log(-8)
Since the logarithm of a negative number is not defined in the real number system, x = -2 is not a valid solution.
Thus, the only valid solution to the equation is x = 14.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili