
Решите |х-х^2-1|=|2х-3+х^2|


Ответы на вопрос

Готово.
-----------------------------------------------




To solve the equation |x - x^2 - 1| = |2x - 3 + x^2|, we need to consider different cases based on the sign of the expressions inside the absolute value bars.
Case 1: (x - x^2 - 1) and (2x - 3 + x^2) are both non-negative.
In this case, the equation simplifies to: x - x^2 - 1 = 2x - 3 + x^2
Now, let's solve for x: x^2 + x^2 - x - 2x + 3 - 1 = 0 2x^2 - 3x + 2 = 0
Using the quadratic formula: x = (-(-3) ± √((-3)^2 - 4 * 2 * 2)) / (2 * 2) x = (3 ± √(9 - 16)) / 4 x = (3 ± √(-7)) / 4
Since the discriminant (9 - 16) is negative, the roots are complex, and there are no real solutions in this case.
Case 2: (x - x^2 - 1) is non-negative, and (2x - 3 + x^2) is negative.
In this case, the equation simplifies to: x - x^2 - 1 = -(2x - 3 + x^2)
Now, let's solve for x: x - x^2 - 1 = -2x + 3 - x^2
Rearrange the equation: x^2 - x - 4 = 0
Using the quadratic formula: x = (1 ± √(1^2 - 4 * 1 * (-4))) / 2 x = (1 ± √(1 + 16)) / 2 x = (1 ± √17) / 2
So, in this case, we have two solutions:
- x = (1 + √17) / 2 ≈ 1.56155
- x = (1 - √17) / 2 ≈ -0.56155
Case 3: (x - x^2 - 1) is negative, and (2x - 3 + x^2) is non-negative.
In this case, the equation simplifies to: -(x - x^2 - 1) = 2x - 3 + x^2
Now, let's solve for x: x^2 - x + 4 = 0
Using the quadratic formula: x = (1 ± √(1^2 - 4 * 1 * 4)) / 2 x = (1 ± √(1 - 16)) / 2 x = (1 ± √(-15)) / 2
Since the discriminant (-15) is negative, the roots are complex, and there are no real solutions in this case.
In conclusion, the real solutions to the equation |x - x^2 - 1| = |2x - 3 + x^2| are approximately:
- x ≈ 1.56155
- x ≈ -0.56155


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili