
X1+x2-x3=2-2x1+x2+x3=3x1+x2+x3=6


Ответы на вопрос




To solve the system of equations, we can use various methods, such as substitution or elimination. Since the system has three equations and three variables, it is possible to find a unique solution.
Let's use the elimination method to solve the system:
Given the system of equations:
- x1 + x2 - x3 = 2
- -2x1 + x2 + x3 = 2
- 3x1 + x2 + x3 = 6
Step 1: Add the first and second equations to eliminate x1: (x1 + x2 - x3) + (-2x1 + x2 + x3) = 2 + 2 -x1 + 2x2 = 4 x2 - x1 = 4 (Equation A)
Step 2: Add the second and third equations to eliminate x3: (-2x1 + x2 + x3) + (3x1 + x2 + x3) = 2 + 6 4x2 = 8 x2 = 2 (Equation B)
Step 3: Substitute the value of x2 from Equation B into Equation A: x2 - x1 = 4 2 - x1 = 4 x1 = 2 - 4 x1 = -2
Step 4: Now that we have x1 and x2, we can find x3 using any of the original equations. Let's use the first equation: x1 + x2 - x3 = 2 -2 + 2 - x3 = 2 -x3 = 2 - 2 -x3 = 0 x3 = 0
So the solution to the system of equations is: x1 = -2 x2 = 2 x3 = 0


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili